含钙镁废渣综合利用的现状及展望
收稿日期: 2021-04-07
网络出版日期: 2022-03-14
基金资助
横向项目《碱渣综合处理工艺技术服务》(hnhgzy2018004)
Present situation and prospect of comprehensive utilization of waste residue containing calcium and magnesium
Received date: 2021-04-07
Online published: 2022-03-14
钙镁型废渣可分为氢氧化钙型、碳酸钙型,根据其中镁含量高低,又可分为高镁型和低镁型,只有高镁型废渣才需要对镁元素进行分离回收;常见的钙镁型废渣有电石渣、碱渣、皂化废渣、磷尾矿等。对钙镁型废渣充分综合利用的现状总结归纳为:氢氧化钙型废渣需通过浸取、过滤分离、浸取液碳化等主要化学物理分离步骤;碳酸钙型废渣需要经过煅烧分解、消化浸取、过滤分离、浸取液碳化等化学物理分离步骤,就可实现将钙元素以轻质碳酸钙(PCC)的形式分离出来;如果是高镁型废渣,则需要增加残渣中氢氧化镁的二氧化碳碳化、过滤分离、氨水沉淀分离或碳酸氢镁热解等化学物理步骤来实现镁元素的分离回收。展望未来,钙镁型废渣充分综合利用是一类兼具环境效益、社会效益和经济效益的循环经济项目,值得关注、重视与推广。
颜鑫 , 魏义兰 . 含钙镁废渣综合利用的现状及展望[J]. 无机盐工业, 2022 , 54(1) : 7 -11 . DOI: 10.19964/j.issn.1006-4990.2021-0227
Calcium magnesium type waste residue can be divided into Ca(OH)2 type and CaCO3 type.According to the con-tent of magnesium,it can be divided into high magnesium type and low magnesium type.Only high magnesium type waste residue needs to separate and recover magnesium.The common calcium magnesium slags are calcium carbide slag,alkali slag,saponification slag,phosphorus tailings and so on.The present situation of comprehensive utilization of Ca(OH)2 type waste residue was summarized as follows:Ca(OH)2 type waste residue should be separated by leaching,filtration and carboni-zation.Calcium could be separated as PCC by calcination,digestion,leaching,filtration and carbonization.If it was a high mag-nesium type waste residue,it was necessary to increase the chemical and physical steps such as CO2 carbonization,filtration separation,ammonia precipitation separation or pyrolysis of magnesium bicarbonate to realize the separation and recovery of magnesium.Looking forward to the future,the comprehensive utilization of calcium magnesium slag would be a kind of circular economy project with environmental,social and economic benefits,which is worthy of concern,attention and promotion.
[1] | 刘代俊. 中国无机固体废弃物处理技术进展[J]. 无机盐工业, 2020, 52(3):1-10. |
[2] | WANG Yali, HAN Xiaoning, CHEN Meina, et al. Desulfurization and denitrification performance of modified rice husk ash-carbide slag absorbent[J]. Materials, 2020, 14(1):68. |
[3] | ZHANG Chunxiao, LI Yingjie, BIAN Zhiguo, et al. [CLCG] Simul-taneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles[J]. Chinese Journal of Chemical Engineering, 2020.Doi: 10.1016/j.cjche.2020.09.026. |
[4] | PRINYA Chindaprasirt, APICHIT Kampala, PEERAPONG Jitsan-giam, et al. Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials[J]. Case Studies in Construction Materials, 2020, 13.Doi: 10.1016/j.cscm.2020.e00389. |
[5] | 杨小彦, 徐婕, 陈刚, 等. 电石渣在化工领域的利用现状及前景[J]. 陕西煤炭, 2020, 39(S1):159-162. |
[6] | 颜鑫, 卢云峰. 轻质系列碳酸钙关键技术[M]. 北京: 化学工业出版社, 2016:231-236. |
[7] | 李晨, 张雷, 张宏勋, 等. 电石渣合成高纯碳酸钙的研究[J]. 无机盐工业, 2011, 43(4):52-54. |
[8] | 颜鑫, 刘海路, 马媛媛, 等. 以电石渣为原料生产食品级轻质碳酸钙的绿色新工艺[J]. 现代化工, 2019, 39(2):199-201. |
[9] | 颜鑫. 一种电石渣生产高纯度轻质碳酸钙的中试技术[J]. 无机盐工业, 2019, 51(8):93. |
[10] | YANG Jie, LIU Shengyu, MA Liping, et al. Mechanism analysis of carbide slag capture of CO2 via a gas-liquid-solid three-phase flui-dization system[J]. Journal of Cleaner Production, 2021, 279.Doi: 10.1016/j.jclepro.2020.123712. |
[11] | 颜鑫, 吴健谊, 卢云峰, 等. 氨碱厂碱渣充分综合利用新技术的研究[J]. 无机盐工业, 2021, 53(1):68-71. |
[12] | WANG Shaojie, BU Huaitian, CHEN Huojun, et al. Floatable ma-gnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater[J]. Chemical Engineering Journal, 2020, 399.Doi: 10.1016/j.cej.2020.125760. |
[13] | 颜鑫. 一种氨碱厂碱渣综合利用新技术[J]. 无机盐工业, 2019, 51(2):88. |
[14] | 颜鑫. 一种环氧氯丙烷皂化废浆综合利用新技术[J]. 无机盐工业, 2020, 52(12):118. |
[15] | 王志琰, 许金玉, 何君洁, 等. 环氧氯丙烷生产技术及发展趋势[J]. 山东化工, 2020, 49(7):70-71. |
[16] | 颜鑫. 一种磷尾矿富集并联产高纯度轻质碳酸钙和氢氧化镁的新技术[J]. 无机盐工业, 2019, 51(3):82. |
[17] | 颜鑫. 一种高镁磷尾矿富集并联产轻质碳酸钙和氢氧化镁的方法:中国,109354000A[P]. 2019-02-19. |
[18] | 张家鑫, 潘益, 夏琰, 等. 磷尾矿制备氢氧化镁阻燃剂的试验研究[J]. 非金属矿, 2020, 43(3):64-68. |
[19] | 周佳琦, 陈葵, 武斌, 等. 磷尾矿中钙镁的活化浸出实验研究[J]. 化工矿物与加工, 2020, 49(10):40-45. |
[20] | 颜鑫, 卢云峰, 马媛媛, 等. 氯化钙-氨水体系生产纳米碳酸钙的复合碳化机理研究[J]. 无机盐工业, 2019, 51(7):77-80. |
/
〈 |
|
〉 |