无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

无机富勒烯类二硫化钨作为PAO6润滑油添加剂摩擦学性能的研究

  • 陈文婷 ,
  • 刘光胜 ,
  • 陈晓蓉 ,
  • 李真 ,
  • 曾敏丽 ,
  • 王南南
展开
  • 广西大学资源环境与材料学院,广西南宁 530004
陈文婷(1994— ),女,硕士,主要从事无机纳米材料制备及润滑油添加剂的研究;E-mail: chenwt@st.gxu.edu.cn

收稿日期: 2021-03-31

  网络出版日期: 2022-03-14

基金资助

国家自然科学基金(51972068);广西自然科学基金(2020JJb160053)

Study on tribological properties of inorganic fullerene-like tungsten disulfide as lubricant additive of PAO6

  • Wenting CHEN ,
  • Guangsheng LIU ,
  • Xiaorong CHEN ,
  • Zhen LI ,
  • Minli ZENG ,
  • Nannan WANG
Expand
  • College of Resources,Environment and Materials,Guangxi University,Nanning 530004,China

Received date: 2021-03-31

  Online published: 2022-03-14

摘要

以旋转化学气相沉积法合成无机富勒烯类二硫化钨(IF-WS2),利用X射线衍射仪、扫描电镜和透射电镜等手段对IF-WS2进行表征;通过超声处理将表面活性剂span80和IF-WS2均匀分散于基础油PAO6中,研究了添加量、温度、载荷等因素对IF-WS2/PAO6减摩抗磨性能的影响;探究了IF-WS2颗粒在PAO6中的分散性和稳定性以及IF-WS2对PAO6抗氧化性的影响。结果表明:合成的IF-WS2为不规则的笼状空心结构,平均粒径为100~200 nm;在载荷为392 N、IF-WS2最佳添加量为0.25%(质量分数,下同)、测试温度为75 ℃时,IF-WS2/PAO6的平均摩擦系数降低15.3%;测试温度为100 ℃时,平均摩擦系数降低约27%,磨痕直径减小了43.4%。在不同载荷、测试温度为100 ℃时,平均摩擦系数随着载荷的增加出现先降低后升高的趋势,磨痕直径不断增加。分散性和稳定性测试表明,span80有效改善了IF-WS2颗粒在PAO6中的分散性,静置192 h后IF-WS2添加量为0.25%的IF-WS2/PAO6的分散稳定性最好。此外,氧化安定性测试显示加入IF-WS2颗粒使 PAO6的抗氧化能力下降了31%。

本文引用格式

陈文婷 , 刘光胜 , 陈晓蓉 , 李真 , 曾敏丽 , 王南南 . 无机富勒烯类二硫化钨作为PAO6润滑油添加剂摩擦学性能的研究[J]. 无机盐工业, 2022 , 54(1) : 45 -50 . DOI: 10.19964/j.issn.1006-4990.2021-0204

Abstract

Inorganic fullerene-like tungsten disulfide(IF-WS2) particles were synthesized by rotating chemical vapor depo-sition,and characterized with X-ray diffractometer(XRD),scanning electron microscope(SEM) and transmission electron microscope(TEM).Surfactants span80 and IF-WS2 were uniformly dispersed in PAO6 oil with vigorous ultrasonic treatment. The effect of addition content,temperature and loading on the antifriction and anti-wear properties of IF-WS2/PAO6 were studied.Moreover,the dispersion and stability of IF-WS2 particles in PAO6 and the effect of IF-WS2 on the oxidation resis-tance of PAO6 were investigated.The results demonstrated that the synthesized IF-WS2 was an irregular hollow cage structure with average size of around 100~200 nm.Under the load of 392 N,optimal addition amount of IF-WS2 of 0.25%,and test temperature of 75 ℃,the average friction coefficient of IF-WS2/PAO6 decreased by 15.3%.When the test temperature was 100 ℃,the average friction coefficient decreased by about 27%,and the wear scar diameter decreased by 43.4%.Under different load and test temperature of 100 ℃,the average friction coefficient decreased firstly and then increased with the increase of load,and the wear scar diameter increased continuously.Dispersion and stability tests showed that span80 effectively improved the dispersion of IF-WS2 particles in PAO6,and the dispersion stability of 0.25% IF-WS2/PAO6 was the best after stewing for 192 h.Additionally,the oxidation stability test proved that adding IF-WS2 particles reduced the antioxidant capacity of PAO6 by 31%.

参考文献

[1] HOLMBERG K, ERDEMIR A. Influence of tribology on global en-ergy consumption,costs and emissions[J]. Friction, 2017, 5(3):263-284.
[2] 江泽琦, 方建华, 陈波水, 等. 磁场中含氯化石蜡润滑油的摩擦学性能研究[J]. 合成润滑材料, 2017, 44(1):7-9.
[3] ISABEL D B B M, MOGNE T L, MARTIN J M, et al. Lubrication of carbon coatings with MoS2 single sheet formed by MoDTC and ZDDP lubricants[J]. Lubrication Science, 2006, 18(3):141-149.
[4] NOSONOVSKY M, BHUSHAN B. Green tribology:principles,re-search areas and challenges INTRODUCTION[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences, 2010, 368(1929):4677-4694.
[5] 马珂. 微纳米润滑添加剂的研究[D]. 大连:大连海事大学, 2009.
[6] 王丽, 罗婷, 陈新春, 等. 球形微纳米颗粒的制备及其作为润滑油添加剂的抗磨减摩性能研究进展[J]. 中国粉体技术, 2020, 26(1):53-60.
[7] HOLMBERG Kenneth, KIVIKYTÖ-REPONEN Päivi, HÄRKISAARI Pirita,et al.Global energy consumption due to friction and wear in the mining industry[J]. Tribology International, 2017, 115:116-139.
[8] DAI W, KHEIREDDIN B, GAO H, et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102:88-98.
[9] LIU Lei, ZHOU Wei. MoS2 hollow microspheres used as a green lu-bricating additive for liquid paraffin[J]. Tribology International, 2017, 114:315-321.
[10] QUAN Xin, ZHANG Songwei, HU Ming, et al. Tribological proper-ties of WS2/MoS2-Ag composite films lubricated with ionic liquids under vacuum conditions[J]. Tribology International, 2017, 115:389-396.
[11] RABASO P, VILLE F, DASSENOY F, et al. Boundary lubrication:Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction[J]. Wear, 2014, 320:161-178.
[12] TANNOUS J, DASSENOY F, LAHOUIJ I, et al. Understanding the tribochemical mechanisms of IF-MoS2 nanoparticles under bound-ary lubrication[J]. Tribology Letters, 2011, 41(1):55-64.
[13] SHAHAR C, ZBAIDA D, RAPOPORT L, et al. Surface functionali-zation of WS2 fullerene-like nanoparticles[J]. Langmuir, 2010, 26(6):4409-4414.
[14] WU J F, ZHAI W S, JIE G F. Preparation and tribological proper-ties of WS2 nanoparticles modified by trioctylamine[J]. Journal of Engineering Tribology, 2009, 223(4):695-703.
[15] WU J, ZHAI W, JIE G. Preparation and tribological properties of tungsten disulfide hollow spheres assisted by methyltrioctylammo-nium chloride[J]. Tribology International, 2010, 43(9):1650-1658.
[16] CHEN Yan, RENNER Peter, LIANG Hong. Dispersion of nanopar-ticles in lubricating oil:A critical review[J]. Lubricants, 2019, 7(1).Doi: 10.3390/lubricants7010007.
[17] LU Z, CAO Z, HU E, et al. Preparation and tribological properties of WS2 and WS2/TiO2 nanoparticles[J]. Tribology International, 2018, 130:1-30.
[18] WU X, GONG K, ZHAO G, et al. MoS2/WS2 quantum dots as high-performance lubricant additive in polyalkylene glycol for steel/steel contact at elevated temperature[J]. Advanced Materials In-terfaces, 2018, 5(1).Doi: 10.1002/admi.201700859.
[19] FANG X, WANG N, CHANG H, et al. Continuous production of IF-WS2 nanoparticles by a rotary process[J]. Inorganics, 2014, 2(2):313-333.
[20] 谢凤, 葛世荣, 李新年, 等. 表面活性剂在润滑油中对纳米石墨分散稳定性的影响[J]. 润滑与密封, 2012, 37(4):1-5.
[21] 刘中常. 纳米材料中纳米粒子团聚的原因及解决方法[J]. 价值工程, 2017(13):157-158.
文章导航

/