地质聚合物激发剂及其激发原理
收稿日期: 2021-04-01
网络出版日期: 2022-03-14
基金资助
国家自然科学基金项目(51974168);国家自然科学基金项目(51662033);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金资助(SYSJJ2020-08)
Geopolymer activator and its excitation principle
Received date: 2021-04-01
Online published: 2022-03-14
激发剂在制备地质聚合物的过程中发挥着重要的作用。首先概述了酸、碱和盐3类激发剂及其激发效果,通过介绍氢氧化钠、氢氧化钾和水玻璃等常用碱激发剂的激发效果,具体分析各类碱激发剂的作用差别。阐述了乙酸、盐酸、硫酸和磷酸等典型的酸激发剂的研究进展,以及硫酸盐、硅酸盐和铝酸盐等作为盐类激发剂的活化能力,在此基础上对3类激发剂的优缺点进行了总结分析。同时通过论述酸、碱和盐3类激发剂的激发原理,进一步表明了3类激发剂都具备激发地聚物原料活性的能力,都能够不同程度地加快地聚体系水化反应进程,显著提高地聚体系的强度。最后,对激发剂在地聚物领域的未来发展作出了展望。
王磊 , 李金丞 , 张晓伟 , 张栋梁 , 王觅堂 . 地质聚合物激发剂及其激发原理[J]. 无机盐工业, 2022 , 54(2) : 16 -20 . DOI: 10.19964/j.issn.1006-4990.2021-0211
The activator plays an important role in the process of preparing geopolymers.The three types of stimulators of acid,alkali and salt and their stimulating effects were summarized firstly.By introducing the stimulating effects of common al-kali stimulators such as sodium hydroxide,potassium hydroxide and water glass,the difference in the effects of various alkali stimulators was analyzed in detail.The research progress on typical acid stimulants such as acetic acid,hydrochloric acid,sul-furic acid and phosphoric acid was described,as well as the activation ability of sulfate,silicate and aluminate as salt stimu-lants.On this basis,the advantages and disadvantages of three kinds of activators were summarized and analyzed.At the same time,by discussing the excitation principles of the three types of activators of acid,base and salt,it was further confirmed that the three types of activators had the ability to stimulate the activity of geopolymer raw materials,and could accelerate the hydration reaction process of geopolymerization system to different degrees,and significantly improved the strength of the geopolymer system.Finally,the future development of stimulants in the field of geopolymers was prospected.
Key words: geopolymer; stimulants; excitation principle; stimulating effect; hydration reaction
[1] | DAVIDOVITS J. Mineral polymers and methods of making them:US,4349386[P]. 1982-09-14. |
[2] | DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Jour-nal of Thermal Analysis, 1989, 35(2):429-441. |
[3] | CELIK A, YILMAZ K, CANPOLAT O, et al. High-temperature be-havior and mechanical characteristics of boron waste additive meta-kaolin based geopolymer composites reinforced with synthetic fi-bers[J]. Construction and Building Materials, 2018, 187:1190-1203. |
[4] | 程海丽, 杨飞华, 马保国, 等. 高铝煤矸石复合活化及其火山灰效应分析[J]. 建筑材料学报, 2016, 19(2):248-254. |
[5] | 孙大全, 顾泽宇, 孙硕, 等. 碱激发粉煤灰-硅灰基地质聚合物的性能及表征[J]. 硅酸盐通报, 2020, 39(5):1533-1539. |
[6] | 易鸣, 吴大志, 夏琳玲. 偏高岭土地质聚合物的制备及其抗压强度研究[J]. 粉煤灰综合利用, 2019, 32(6):31-35,71. |
[7] | YURT Ü. High performance cementless composites from alkali acti-vated GGBFS[J]. Construction and Building Materials, 2020, 264.Doi: 10.1016/j.conbuildmat.2020.120222. |
[8] | 张耀君, 赵永林, 李海宏, 等. 水玻璃激发矿渣制备纳米地质聚合物研究[J]. 非金属矿, 2009, 32(1):39-41,44. |
[9] | NASIR M, JOHARI M A M, MASLEHUDDIN M, et al. Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-ba-sed composites[J]. Construction and Building Materials, 2020, 265.Doi: 10.1016/j.conbuildmat.2020.120851. |
[10] | 关虓, 陈霁溪, 高扬, 等. NaOH碱激发煤矸石胶砂试块力学性能及微观结构[J]. 西安科技大学学报, 2020, 40(4):658-664. |
[11] | MUTHADHI A, SUGANYA B. Effect of activator on strength and microstructure of alkali activated concrete with class C fly ash[J]. Iranian Journal of Science and Technology,Transactions of Civil Engineering, 2021.Doi: 10.1007/s40996-021-00600-3. |
[12] | 王淑玲. 碱激发粉煤灰制备地质聚合物及其性能研究[D]. 长沙:长沙理工大学, 2016. |
[13] | 杨凡. 不同激发剂对矿渣水泥强度的影响[J]. 铁道技术监督, 2010, 38(10):18-21. |
[14] | 张雪芳, 李艳, 柴淑媛, 等. 激发剂模数对高硅低钙粉煤灰基地聚物力学性能的影响研究[J]. 墙材革新与建筑节能, 2019(11):63-66. |
[15] | CUI X M, ZHENG G J, HAN Y C, et al. A study on electrical con-ductivity of chemosynthetic Al2O3-2SiO2 geoploymer materials[J]. Journal of Power Sources, 2008, 184(2):652-656. |
[16] | TCHAKOUTE H K, RUESCHER C H, KAMSEU E, et al. Influence of the molar concentration of phosphoric acid solution on the pro-perties of metakaolin-phosphate-based geopolymer cements[J]. Applied Clay Science, 2017, 147:184-194. |
[17] | 刘建, 刘派, 丁铸. 磷酸盐基矿聚物材料的制备与机理研究[J]. 深圳大学学报:理工版, 2020, 37(6):597-603. |
[18] | 邢书银, 田亮亮, 王海霞, 等. 磷酸基偏高岭土地质聚合物研究[J]. 青海大学学报:自然科学版, 2015, 33(6):30-35. |
[19] | 龚志林. 失效磷酸基抛光液与赤泥反应制备地质聚合物的工艺探讨[J]. 当代化工研究, 2020(10):123-124. |
[20] | 颜贵红. 酸激发水泥基材料力学及收缩性能研究[D]. 徐州:中国矿业大学, 2018. |
[21] | SELLAMI M, BARRE M, TOUMI M. Thermal properties and elec-trical conductivity of phosphoric acid-based geopolymer with meta-kaolin[J]. Applied Clay Science, 2019, 180.Doi: 10.1016/j.clay.2019.105192. |
[22] | DONG T, XIE S B, WANG J S, et al. Properties and characteriza-tion of a metakaolin phosphate acid-based geopolymer synthesized in a humid environment[J]. Journal of the Australian Ceramic Society, 2020, 56(1):175-184. |
[23] | WAGH A S. Chemically bonded phosphate ceramics-A novel class of geopolymers[J]. Ceramic Transactions, 2004, 165:107-116. |
[24] | 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁:广西大学, 2012. |
[25] | GAO L, ZHENG Y X, TANG Y, et al. Effect of phosphoric acid co-ntent on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers[J]. Heliyon, 2020, 6(4).Doi: 10.1016/j.heliyon.2020.e03853. |
[26] | ZHANG B, GUO H, YUAN P, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite:The role of precal-cination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110.Doi: 10.1016/j.cemconcomp.2020.103601. |
[27] | 庞超明, 秦鸿根, 章春梅, 等. 激发剂对掺工业废渣胶凝材料路用性能的影响[J]. 混凝土与水泥制品, 2005(3):11-13,34. |
[28] | 林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4):53-55,62. |
[29] | 田秀淑, 赵子伯, 金婷艳. 激发剂对钢渣-矿粉胶凝材料力学性能的影响及机理分析[J]. 混凝土与水泥制品, 2015(4):90-92. |
[30] | 王宁, 林燕. 三种活性激发剂对混凝土抗冲磨性能影响的试验研究[J]. 四川建材, 2018, 44(11):13-14. |
[31] | NIKOLOV A, NUGTEREN H, ROSTOVSKY I. Optimization of geo-polymers based on natural-zeolite clinoptilolite by calcination and use of aluminate activators[J]. Construction and Building Materials, 2020, 243.Doi: 10.1016/j.conbuildmat.2020.118257. |
[32] | PURDON A O. The action of alkalis on blast-furnace slag[J]. Jour-nal of the Society of Chemical Industry, 1940, 59(9):191-202. |
[33] | GARCIA L I, PALOMO A, FERNANDEZ J A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels.Study in the ter-nary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Con-crete Research, 2011, 41(9):923-931. |
[34] | 聂轶苗, 马鸿文, 杨静, 等. 矿物聚合材料固化过程中的聚合反应机理研究[J]. 现代地质, 2006, 20(2):340-346. |
[35] | VAN JAARSVELD J G S, VAN DEVENTER J S J, LORENZEN L. The potential use of geopolymeric materials to immobilise toxic metals:Part I.Theory and applications[J]. Minerals Engineering, 1997, 10(7):659-669. |
[36] | XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3):247-266. |
[37] | 曹德光, 苏达根, 路波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11):1385-1389. |
[38] | LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymeriza-tion kinetics:Effect of clay particle size[J]. Applied Clay Science, 2016, 132:571-578. |
[39] | WANG Y S, DAI J G, DING Z, et al. Phosphate-based geopolymer:Formationmechanism and thermal stability[J]. Materials Letters, 2017, 190:209-212. |
[40] | LV Q F, WANG Z S, GU L Y, et al. Effect of sodium sulfate on str-ength and microstructure of alkali-activated fly ash based geopoly-mer[J]. Journal of Central South University, 2020, 27(6):1691-1702. |
/
〈 |
|
〉 |