无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
无机新型材料——碳资源转化与利用

Cr/SSZ-13催化二氧化碳氧化乙烷脱氢反应的研究

  • 周微 ,
  • 于海斌 ,
  • 马新宾
展开
  • 1.天津大学化工学院,天津 300350
    2.中海油天津化工研究设计院有限公司
周微(1985— ),女,博士,主要研究方向为催化材料的制备和原位表征研究;E-mail: 362200922@163.com

收稿日期: 2021-09-13

  网络出版日期: 2021-12-16

Oxidative dehydrogenation of ethane with carbon dioxide to ethylene over Cr/SSZ-13 catalyst

  • Wei ZHOU ,
  • Haibin YU ,
  • Xinbin MA
Expand
  • 1. Institute of Chemical Engineering,Tianjin University,Tianjin 300350,China
    2. CenterTech Tianjin Chemical Research and Design Institute Co.Ltd.

Received date: 2021-09-13

  Online published: 2021-12-16

摘要

通过脱氢反应将低碳烷烃转化为同碳数的烯烃是烷烃高值化利用和烯烃原料多元化的重要途径。烷烃氧化脱氢制烯烃的反应具有不受反应平衡限制、积炭少、反应温度低等优点,一直是研究的热点。通过利用浸渍法制备不同铬(Cr)负载量的Crx/SSZ-13系列催化剂,采用氮气物理吸附、氨程序升温脱附(NH3-TPD)、二氧化碳程序升温脱附(CO2-TPD)、氢气程序升温还原(H2-TPR)、紫外-可见吸收光谱(UV-Vis)以及高角度环形暗场-扫描透射电镜(HAADF-STEM)与耦合能谱分析(EDX-Mapping)等方法对催化剂进行了物性表征,并用微型固定床反应器评价催化剂对乙烷氧化脱氢制乙烯的催化性能,最终建立了Cr/SSZ-13催化剂的构效关系。研究发现,当n(二氧化硅)/n(氧化铝)=10时,Cr1.5/SSZ-13-10催化剂上含有丰富的Cr3+物种,其中配位不饱和Cr3+是优异的脱氢活性位,有利于二氧化碳氧化乙烷脱氢反应的进行。因此,Cr1.5/SSZ-13催化剂在650 ℃时表现出优异的催化性能,即二氧化碳转化率和乙烷转化率分别达到26.41%和53.2%,乙烯产率为38.83%。

本文引用格式

周微 , 于海斌 , 马新宾 . Cr/SSZ-13催化二氧化碳氧化乙烷脱氢反应的研究[J]. 无机盐工业, 2021 , 53(12) : 43 -48 . DOI: 10.19964/j.issn.1006-4990.2021-0557

Abstract

The conversion of light alkanes into olefins with the same carbon number through dehydrogenation reaction is an important approach for high-value utilization of alkanes and diversification of olefin raw materials.Oxidative dehydrogenation of alkanes to olefins has been a hot issue due to its advantages such as no limit of reaction equilibrium,less carbon deposition and low reaction temperature.CRX/SSZ-13 series catalysts with different Cr loading were prepared by impregnation method.The physical properties of the catalysts were characterized by nitrogen physical adsorption,ammonia-temperature programmed desorption(NH3-TPD),carbon dioxide-temperature programmed desorption(CO2-TPD),hydrogen-temperature programmed reduction(H2-TPR),ultraviolet-visible spectroscopy(UV-Vis) and high-angle circular dark-field scanning transmission electron microscope(HAADF-STEM) coupled energy spectrum analysis(EDX-Mapping).The catalytic performance of the catalysts for oxidative dehydrogenation of ethane to ethylene was evaluated in a micro fixed bed reactor.Finally,the structure-activity relationship of Cr/SSZ-13 catalyst was established.It was found that Cr1.5/SSZ-13-10 catalyst[n(SiO2)/n(Al2O3)=10] contained rich Cr3+ species,and the coordination unsaturated Cr3+ was an excellent dehydrogenation active site,which was co-nducive to the dehydrogenation of ethane by carbon dioxide oxidation.Therefore,Cr1.5/SSZ-13-10 catalyst showed excellent catalytic performance at 650 ℃,the carbon dioxide conversion and ethane conversion reached 26.41% and 53.2%,respectively,and the ethylene yield was 38.83%.

参考文献

[1] ROGG S, HESS C. CO2 as a soft oxidant for propane oxidative dehy- drogenation:A mechanistic study using operando UV Raman spec- troscopy[J]. Journal of CO2 Utilization, 2021, 50:101604-101611.
[2] GAMBO Y, ADAMU S, ABDULRASHEED A A, et al. Catalyst design and tuning for oxidative dehydrogenation of propane-A review[J]. Applied Catalysis A:General, 2021, 609:117914-117942.
[3] CHEN D, HOLMEN A, SUI Z J, et al. Carbon mediated catalysis:A review on oxidative dehydrogenation[J]. Chinese Journal of Cataly- sis, 2014, 35(6):824-841.
[4] ABDELBAKI Y, ARRIBA A, SOLSONA B, et al. The Nickel-sup- port interaction as determining factor of the selectivity to ethylene in the oxidative dehydrogenation of ethane over nickel oxide/alumi- na catalysts[J]. Applied Catalysis A:General, 2021, 623:118242-118254.
[5] KHARLAMOVA T S, TIMOFEEV K L, SALAEV M A, et al. Mono- layer MgVOx/Al2O3 catalysts for propane oxidative dehydrogenation: Insights into a role of structural,redox,and acid-base properties in catalytic performance[J]. Applied Catalysis A:General, 2020, 598:117574-117585.
[6] JIANG X, SHARMA L, FUNG V, et al. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis[J]. ACS Catalysis, 2021, 11:2182-2234.
[7] YU P, LIU Y L, DESHLAHRA P, et al. Detailed kinetic modeling of NOx-mediated oxidative dehydrogenation of propane[J]. Industrial & Engineering Chemistry Research, 2021, 60(37):13553-13561.
[8] YAN H, ALAYOGLU S, WU W Q, et al. Identifying boron active si- tes for the oxidative dehydrogenation of propane[J]. ACS Catalysis, 2021, 11:9370-9376.
[9] QI W, SU D S. Metal-free carbon catalysts for oxidative dehydro- genation reactions[J]. ACS Catalysis, 2014, 4:3212-3218.
[10] VENEGAS J M, MCDERMOTT W P, HERMANS I, Serendipity in catalysis research:Boron-based materials for alkane oxidative de- hydrogenation[J]. Accounts of Chemical Research 2018, 51:2556-2564.
[11] GOMEZ E, YAN B, KATTEL S, et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J]. Nature Reviews Che- mistry, 2019, 3(11):638-649.
[12] AL-AWADI A S, AL-ZAHRANI S M, EL-TONI A M, et al. Dehy- drogenation of ethane to ethylene by CO2 over highly dispersed Cr on large-pore mesoporous silica catalysts[J]. Catalysts, 2020, 10(1):97-114.
[13] AL-MAMOORI A, LAWSON S, ROWNAGHI A A, et al. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture- utilization process[J]. Applied Catalysis B:Environmental, 2020, 278:119329-119339.
[14] ZHANG L, WANG Z Y, SONG J, et al. Facile synjournal of SiO2 su- pported GaN as an active catalyst for CO2 enhanced dehydrogena- tion of propane[J]. Journal of CO2 Utilization, 2020, 38:306-313.
[15] BAEK J, YUN H J, YUN D, et al. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2:Insight into the nature of catalytically active chromium sites[J]. ACS Catalysis, 2012, 2:1893-1903.
[16] GAO Y G, JIE X Y, WANG C Z, et al. One-pot synjournal of Ca ox- ide-promoted Cr catalysts for the dehydrogenation of propane using CO2[J]. Industrial & Engineering Chemistry Research, 2020, 59:12645-12656.
[17] XUE X L, LANG W Z, YAN X, et al. Dispersed vanadium in three- dimensional dendritic mesoporous silica nanospheres:Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2[J]. ACS Applied Materials & Interfaces, 2017, 9:15408-15423.
[18] NUMAN M, EOM E, LI A, et al. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based cataly- sts[J]. ACS Catalysis, 2018, 8:3454-3468.
[19] LAWSON S, NEWPORT K A, AXTELL A, et al. Structured bifunc- tional catalysts for CO2 activation and oxidative dehydrogenation of propane[J]. ACS Sustainable Chemistry & Engineering, 2021(9):5716-5727.
[20] WANG S B, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation-A review[J]. Energy & Fuels, 2004, 18:1126-1139.
[21] 杜凯敏, 范杰. 丙烷氧化脱氢制丙烯研究进展[J]. 化工进展, 2019, 38(6):2697-2706.
[22] SHI X, JI S, WANG K. Oxidative dehydrogenation of ethane to et- hylene with carbon dioxide over Cr-Ce/SBA-15 catalysts[J]. Ca- talysis Letters, 2008, 125:331-339.
[23] MUKJERJEE D, PARK S-E, REDDY B M. CO2 as a soft oxidant for oxidative dehydrogenation reaction:An eco benign process for industry[J]. Journal of CO2 Utilization, 2016, 16:301-312.
[24] OTROSHCHENKO T P, RODEMERCK U, LINKE D, et al. Syner- gy effect between Zr and Cr active sites in binary CrZrOx or suppo- rted CrOx/LaZrOx:Consequences for catalyst activity,selectivity and durability in non-oxidative propane dehydrogenation[J]. Jo- urnal of Catalysis, 2017, 356:197-205.
[25] MA F, CHEN S, WANG Y, et al. Characterization of redox and acid properties of mesoporous Cr-TiO2 and its efficient performance for oxidative dehydrogenation of propane[J]. Applied Catalysis A: General, 2012, 427-428:145-154.
[26] MIMURA N, TAKAHARA I, INABA M, et al. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to eethylene with CO2 as an oxidant[J]. Catalysis Communications, 2002, 3(6):257-262.
[27] NAJARI S, SAEIDI S, CONCEPCION P, et al. Oxidative dehydro- genation of ethane:Catalytic and mechanistic aspects and future trends[J]. Chemical Society Reviews, 2021, 50:4564-4605.
[28] HU Z P, YANG D D, WANG Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40:1233-1254.
[29] SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20):10613-10653.
[30] HU Z P, WANG Z, YUAN Z Y, et al. Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene[J]. Molecular Catalysis, 2020, 493:111052-111060.
[31] 王雅琼, 陈昌平, 许文. 紫外可见光谱法测定Cr3+电化学氧化过程中的Cr2O72-[J]. 光谱学与光谱分析, 2003, 23(6):146-149.
[32] AL-AWADI A S, EL-TONI A M, AL-ZAHRANI S M. Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with car- bon dioxide[J]. Applied Catalysis A:General, 2019, 584:117114-117124.
文章导航

/