无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

重芳烃轻质化催化剂n(Ni)/n(Ni+Mo)的优化与分析

  • 刘航 ,
  • 臧甲忠 ,
  • 范景新 ,
  • 郭春垒 ,
  • 靳凤英 ,
  • 赵训志
展开
  • 1.中海油天津化工研究设计院有限公司,天津300131
    2.天津市炼化催化技术工程中心
刘航(1988— ),男,硕士研究生,工程师,研究方向为芳烃化工催化剂的开发与应用;E-mail: lhsdut@163.com

收稿日期: 2021-03-09

  网络出版日期: 2021-12-16

基金资助

中国海洋石油集团公司项目(CNOOC-KJ 135FZDXM 00 LH 009 ZS-2016)

Optimization and analysis of n(Ni)/n(Ni+Mo) of heavy aromatics to light aromatics catalyst

  • Hang LIU ,
  • Jiazhong ZANG ,
  • Jingxin FAN ,
  • Chunlei GUO ,
  • Fengying JIN ,
  • Xunzhi ZHAO
Expand
  • 1. CenerTech Tianjin Chemical Research and Design Institute Co. Ltd.,CNOOC,Tianjin 300131,China
    2. Tianjin Refinery Catalytic Technology Engineering Center

Received date: 2021-03-09

  Online published: 2021-12-16

摘要

β分子筛为载体,在保持金属总负载量不变的情况下,采用等体积浸渍法制备了4种不同n(Ni)/n(Ni+Mo)的催化剂。分别采用X射线衍射(XRD)、比表面积测试(BET)、氨程序升温脱附(NH3-TPD)、氢程序升温还原(H2-TPR)、氢程序升温脱附(H2-TPD)和热重-差热分析(TG-DTG)等方法对催化剂进行了表征。结果表明,4种催化剂的酸量和酸强度相近,在n(Ni)/n(Ni+Mo)等于基准+0.2时,Mo与载体之间的相互作用最弱,其氢气吸附量最多且积炭量最少;采用某炼厂重整C10+ 重芳烃对4种催化剂进行评价,结果表明n(Ni)/n(Ni+Mo)等于基准+0.2催化剂具有最优的催化活性和稳定性。上述结果表明,影响重芳烃轻质化催化剂活性和稳定性的关键因素是催化剂氢气吸附量的多少,氢气吸附量越多金属表面的溢流氢效应越明显,积炭前驱体被溢流氢及时消除,从而保护了催化剂的加氢活性中心不被积炭覆盖,有助于催化剂在较高活性下保持稳定。

本文引用格式

刘航 , 臧甲忠 , 范景新 , 郭春垒 , 靳凤英 , 赵训志 . 重芳烃轻质化催化剂n(Ni)/n(Ni+Mo)的优化与分析[J]. 无机盐工业, 2021 , 53(12) : 140 -145 . DOI: 10.19964/j.issn.1006-4990.2021-0137

Abstract

In order to further improve the activity and stability of heavy aromatic light catalyst,four catalysts with different n(Ni)/n(Ni+Mo) atomic ratios were prepared by incipient-wetness impregnation method with zeolite β as support.The total mass of the metal was same.The catalysts were characterized by XRD,NH3-TPD,H2-TPR,H2-TPD and TG-DTG.The results showed that the acid content and acid strength of the four catalysts were similar,and when the n(Ni)/n(Ni+Mo) atomic ratio was of standard+0.2,the interaction between Mo and the support was the weakest,with the maximum adsorption capacity of H2 and the minimum carbon deposition.Four catalysts were evaluated by using reforming C10+ heavy aromatics.The results showed that the catalyst with the n(Ni)/n(Ni+Mo) atomic ratio of standard+0.2 had the optimal catalytic activity and stabi-lity.The above results showed that the key factor affecting the activity and stability of catalyst was the amount of H2 adsorption,the more H2 was adsorbed,the more obvious the hydrogen overflow effect was on metal surface.The precursor of carbon deposition was eliminated in time by overflow hydrogen,thus,the hydrogenation active center of the catalyst was protected from carbon deposition,it was helpful to keep the catalyst stable at high activity.

参考文献

[1] 臧甲忠, 郭春垒, 范景新, 等. C9+重芳烃增产BTX技术进展[J]. 化工进展, 2017, 36(4):1278-1287.
[2] 孔德金, 祁晓岚, 朱志荣, 等. 重芳烃轻质化技术进展[J]. 化工进展, 2006, 25(9):983-987.
[3] 刘杰, 刘岗. C9芳烃深加工技术进展[J]. 精细化工原料及中间体, 2005(6):3-4,11.
[4] 曹根, 李东胜. 重芳烃的加工和应用[J]. 辽宁化工, 2007, 36(2):120-122.
[5] 宋夕平, 宋金富. 国内外苯、甲苯及二甲苯的增产技术[J]. 齐鲁石油化工, 2000, 28(2):138-141.
[6] 陈庆龄, 孔德金, 杨卫胜. 对二甲苯增产技术发展趋向[J]. 石油化工, 2004, 33(10):909-915.
[7] KWAK B S. Applications of heterogeneous catalytic processes to the environmentally friendly synjournal of fine chemicals[J]. Catalysis Surveys from Asia, 2005, 9(2):103-116.
[8] ICHIOKA R, YAMAKAWA S, OKINO H. Process for producing xylene:US, 5847256[P]. 1998-12-08.
[9] 王秋. 重芳烃轻质化工艺研究[J]. 辽宁化工, 2001, 30(4):154-156.
[10] 刘永存, 肖寒, 王帅, 等. Ni-Mo-P/Beta-ZSM-5催化剂对四氢萘加氢裂化性能的研究[J]. 无机盐工业, 2018, 50(6):81-85.
[11] MAITY S K. Effect of preparation methods and content of phosphorus on hydrotreating activity[J]. Catalysis Today, 2008, 130:374-381.
[12] YANG Lei, PENG Chong, FANG Xiangchen, et al. Hierarchically macro-mesoporous Ni-Mo/Al2O3 catalysts for hydrod-esulfurization of dibenzothiophene[J]. Catalysis Communications, 2019, 121:68-72.
[13] ATANASOVA P, TABAKOVA T, VLADOV C, et al. Effect of pho- sphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/alumina hydrotrea- ting catalysts[J]. Applied Catalysis A:General, 1997, 161(1/2):105-119.
[14] 周同娜, 尹海亮, 柳云骐, 等. 磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响[J]. 燃料化学学报, 2010, 38(1):69-74.
[15] QU Lianglong, ZHANG Weiping, KOOYMAN P J, et al. MAS NMR, TPR,and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. Journal of Catalysis, 2003, 215(1):7-13.
[16] ARNOLDY P, JONGE J C M D, MOULIJN J A. Temperature-pro- grammed reduction of MoO3 and MoO2[J]. Journal of Physical Chemistry, 1985, 89(21):4517-4526.
[17] BRITO J L, LAINE J, PRATT K C. Temperature-programmed re- duction of Ni-Mo oxides[J]. Journal of Materials Science, 1989, 24(2):425-431.
[18] BURCH R, COLLINS A. Reducibility of Ni-Mo/Al2O3 catalysts:A TPR study[J]. Journal of Catalysis, 1993, 139(2):540-550.
[19] BURCH R, COLLINS A. Temperature-programmed reduction of Ni/Mo hydrotreating catalysts[J]. Applied Catalysis, 1985, 18(2):389-400.
[20] LACROIX M, DUMONTEIL C, BREYSSE M, et al. Hydrogen acti-vation on alumina supported MoS2 based catalysts:Role of the promoter[J]. Journal of Catalysis, 1999, 185(1):219-222.
[21] 王雪, 孙昱东, 张强, 等. 催化剂上积炭结构和组成的分析研究方法[J]. 分析测试技术与仪器, 2013, 19(1):6-11.
[22] 张一卫. 以ZSM-5分子筛为载体的新型丙烷脱氢催化剂的研究[D]. 南京:东南大学, 2006.
文章导航

/