无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

柑桔皮与铬渣共热解毒六价铬

  • 田仪娟 ,
  • 晏超群 ,
  • 程治良 ,
  • 全学军 ,
  • 李纲
展开
  • 重庆理工大学化学化工学院,重庆 400054
田仪娟(1997— ),女,硕士研究生,主要研究铬盐清洁工艺研究;E-mail: tyj@2019.cqut.edu.cn

收稿日期: 2021-03-10

  网络出版日期: 2021-12-16

基金资助

重庆市自然基金面上项目(cstc2020jcyj-msxmX0308);重庆市教委科学技术研究青年项目(KJQN202001148);2020年重庆市巴南区科技成果转化项目(clgycx 20203067);重庆理工大学研究生创新项目资助(clgycx20203070)

Detoxification of Cr(Ⅵ) from chromite ore processing residue by pyrolysis with citrus peel

  • Yijuan TIAN ,
  • Chaoqun YAN ,
  • Zhiliang CHENG ,
  • Xuejun QUAN ,
  • Gang LI
Expand
  • School of Chemistry and Chemical Engineering,Chongqing University of Technology,Chongqing 400054,China

Received date: 2021-03-10

  Online published: 2021-12-16

摘要

铬渣是铬盐生产过程中产生的废渣,含有大量的水溶性和不溶性六价铬[Cr(Ⅵ)],对人类和生态环境均有很大危害。提出了铬渣与农业废弃物柑桔皮进行混合热解,利用柑桔皮热解产生的还原性气体及生物质炭将Cr(Ⅵ)还原为无毒的三价铬[Cr(Ⅲ)]。系统研究了热解温度、柑桔皮与铬渣质量比、热解时间和球磨时间等条件对铬渣中总Cr(Ⅵ)、水溶性Cr(Ⅵ)和难溶性Cr(Ⅵ)还原去除率的影响规律。得到较佳的实验参数:热解温度为600 ℃,柑桔皮与铬渣的质量比为30%,热解时间为45 min,球磨时间为1 h。在最佳条件下,铬渣中总Cr(Ⅵ)的还原去除率达到99.51%,其含量由1 641.95 mg/kg降低到8.04 mg/kg,远低于25 mg/kg的国家排放标准(HJ/T 301—2007《铬渣污染治理环境保护技术规范》)。并对解毒后的铬渣进行了X射线衍射(XRD)分析,结果表明铬渣热解解毒前后物相一致。该研究结果可为无钙焙烧铬渣的无害化处理提供新的技术思路。

本文引用格式

田仪娟 , 晏超群 , 程治良 , 全学军 , 李纲 . 柑桔皮与铬渣共热解毒六价铬[J]. 无机盐工业, 2021 , 53(12) : 129 -134 . DOI: 10.19964/j.issn.1006-4990.2021-0118

Abstract

Chromite ore processing residue(COPR) is a by-product of the chromium salt processing and production industry,which contains a large amount of water-soluble and insoluble hexavalent chromium[Cr(Ⅵ)].The leaching of Cr(Ⅵ) exhibits great harm to human being and the ecological environment.A new process for detoxification treatment of COPR was developed,which included mixing and pyrolyzing COPR with the agricultural waste of citrus peel(CP) and the resulted reduction gas and biochar were used to effectively reduce Cr(Ⅵ) to trivalent chromium[Cr(Ⅲ)].Besides,the process parameters such as pyrolysis temperature,CP/COPR mass ratio,pyrolysis time,and ball milling time on the reduction efficiency(RE) and resi-dual quantity of Cr(Ⅵ) were systematically investigated.The results showed that the pyrolysis of the COPR with CP exhibited an excellent detoxification effect on COPR,and Cr(Ⅵ) could effectively be converted into trivalent chromium[Cr(Ⅲ)].The reduction efficiency of total Cr(Ⅵ) could reach as high as 99.51%.After the detoxification treatment,the total amount of Cr(Ⅵ) in the COPR decreased from 1 641.977 mg/kg to 8.04 mg/kg,which was well below the national emission standard of China of 25 mg/kg(HJ/T 301—2007“Environmental protection technical specifications for pollution treatment of the Chromi-um residue”).Subsequently,the XRD analysis of COPR after detoxification showed that the phase compositions before and af-ter pyrolysis of COPR were identical.The research results could provide an alternative solution to the detoxification of the COPR from the lime-free roasting process of chromium salt industry.

参考文献

[1] 叶鹏. 铬铁矿无钙焙烧渣中铁铝铬的资源化利用[D]. 重庆:重庆理工大学, 2020.
[2] PENG Zhiwei, WANG Liancheng, GU Foquan, et al. Recovery of chromium from ferronickel slag:A comparison of microwave roasting and conventional roasting strategies[J]. Powder Technology, 2020, 372(4):578-584.
[3] 李纲. 微波/生物质法解毒铬渣的研究[D]. 重庆:重庆大学, 2007.
[4] CHEN Gang, WANG Jiajun, WANG Xiaohui, et al. An investigation on the kinetics of chromium dissolution from Philippine chromite ore at high oxygen pressure in KOH sub-molten salt solution[J]. Hydrometallurgy, 2013, 139:24-53.
[5] 吴俊, 程雯, 全学军, 等. 铬铁矿无钙焙烧渣的酸浸解毒及浸出行为[J]. 无机盐工业, 2019, 51(7):64-67.
[6] ZHAO Qing, JIAN Maofa, LIU Chengjun, et al. Recovery of chromi- um from residue of sulfuric acid leaching of chromite[J]. Process Sa- fety and Environmental Protection, 2018, 113:78-87.
[7] 黄萧. 复合地质聚合物固化/稳定化铬渣及其强化技术研究[D]. 重庆:重庆大学, 2018.
[8] WANG Yunya, YANG Zhihui, CHAI Liyuan, et al. Diffusion of hex- avalent chromium in chromium-containing slag as affected by micro- bial detoxification[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):1173-1178.
[9] 吴俊, 秦险峰, 全学军, 等. 铬铁矿无钙焙烧渣中铬盐水洗回收及还原解毒工艺研究[J]. 无机盐工业, 2019, 51(2):56-61.
[10] ZHANG Dalei, ZHANG Mmeiyi, ZHANG Chuhui, et al. Pyrolysis treatment of chromite ore processing residue by biomass:Cellulose pyrolysis and Cr (Ⅵ) reduction behavior[J]. Environmental Sci- ence & Technology, 2016, 50(6):3111-3118.
[11] ZHANG Dalei, KONG Hainan, WU Deyi, et al. Remediation of chro- mite ore processing residue by pyrolysis process with sewage slu- dge[J]. Bioresource Technology, 2009, 100(11):2874-2877.
[12] 彭亢晋, 张大磊, 孔海南, 等. 热解解毒铬渣处理水中磷酸盐的应用[J]. 净水技术, 2010, 29(4):44-48.
[13] 张大磊, 何圣兵, 蔡荣宝, 等. 铬渣的热解无害化处理[J]. 环境污染与防治, 2009, 31(10):1-5.
[14] LU Cunfang, XI Wenchang, QUAN Xuejun, et al. Remediation of lime-free roasting chromite ore processing residue (COPR) by wa- ter leaching and pyrolysis process[J]. Energy Sources,Part A:Re- covery,Utilization,and Environmental Effects, 2018, 40(11):1417-1425.
[15] 吴俊, 全学军, 李纲, 等. 铬铁矿无钙焙烧渣的SO2还原解毒[J]. 化工学报, 2018, 69(4):1678-1686.
[16] DING Yanming, HUANG Biqing, LI Kaiyuan, et al. Thermal inter- action analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis[J]. Energy, 2020, 195.Doi: 10.1016/j.energy.2020.117010.
[17] AMENAGHAWON A N, ANYALEWECHI C L, OKIEIMEN C O, et al. Biomass pyrolysis technologies for value-added products:A st- ate-of-the-art review[J]. Environment,Development and Sustaina- bility, 2021, 23:14324-14378.
[18] 李依韩. 生物质热解还原铬渣的机理研究[D]. 青岛:青岛理工大学, 2013.
[19] ZHANG Dalei, HE Shengbing, DAI Luwei, et al. Treatment of chro- mite ore processing residue by pyrolysis with rice straw[J]. Che- mosphere, 2009, 77(8):1143-1145.
[20] ZHANG Yang, ZHENG Shili, DU Hao, et al. Effect of mechanical activation on alkali leaching of chromite ore[J]. Transactions of Non- ferrous Metals Society of China, 2010, 20(5):888-891.
文章导航

/