不同钴含量对三元正极材料性能的影响研究
收稿日期: 2021-03-24
网络出版日期: 2021-11-15
Study on effect of different cobalt content on properties of ternary cathode materials
Received date: 2021-03-24
Online published: 2021-11-15
随着新能源汽车和锂离子电池的普及和推广,钴的需求量逐渐增大,降低动力三元正极材料中钴元素的含量,成为新能源产业链所有公司的当务之急。通过对NCM622三元正极材料中不同钴元素的含量进行实验探索,在最佳实验条件下,分别合成NCM60/20/20、NCM60/15/25、NCM60/10/30、NCM60/05/35 4种正极材料,并对三元正极材料的SEM、XRD、首次放电容量、首次放电效率、倍率性能、循环性能及直流阻抗(DCR)增长等性能指标进行分析,探索钴元素含量对三元正极材料和锂离子电池的影响。实验发现,钴元素物质的量分数由20%降低至5%,材料的首次放电容量由178 mA·h/g降低至165 mA·h/g,50圈循环保持率由96%降低至88%,DCR由10%增长至20%,当钴元素物质的量分数低于10%时,性能衰减更为明显。
张彬 , 张萍 , 向晓刚 , 王政强 . 不同钴含量对三元正极材料性能的影响研究[J]. 无机盐工业, 2021 , 53(11) : 91 -94 . DOI: 10.19964/j.issn.1006-4990.2021-0183
With the popularization and promotion of new energy vehicle and lithium-ion batteries,the need of cobalt is gradu-ally increased.So,reducing the content of cobalt in power ternary cathode materials has become an urgent need for all compa-nies in the new energy industry chain. Different cobalt content in NCM622 cathode material was explored.Four kinds of ca-thode materials,NCM60/20/20,NCM60/15/25,NCM60/10/30,NCM60/05/35,were synthesized under the optimum experi-mental conditions.The effect of cobalt content on the ternary cathode materials and lithium-ion batteries was explored by ana-lyzing the SEM,XRD,initial discharge capacity,initial efficiency,rate performance,cycle performance and DCR growth.It′s found that,when the molar content of cobalt decrease from 20% to 5%,the initial discharge capacity decrease from 178 mA·h/g to 165 mA·h/g;the capacity retention of the 50 th cycle decrease from 96% to 88%;the DCR growth from 10% to 20%.When the molar content of cobalt was less than 10%,the properties were worst.
[1] | MANTHIRAM A. A reflection on lithium-ion battery cathode che-mistry[J]. Nature Communications, 2020, 11(1):1550-1553. |
[2] | MANTHIRAM A, SONG B, LI W. A perspective on nickel-rich lay-ered oxide cathodes for lithium-ion batteries[J]. Energy Storage Ma-ter, 2017(6):125-139. |
[3] | KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-Rich cat-hode for commercialization[J]. Advanced Energy Materials, 2018, 8(6).Doi: 10.1002/aenm.201702028. |
[4] | 邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学:化学, 2014, 44(7):1104-1115. |
[5] | 俞会根, 王恒, 盛军. 三元正极材料 Li[Ni-Co-Mn]O2的研究进展[J]. 电源技术, 2014, 38(9):1749-1752. |
[6] | 何爱珍, 叶学海, 郅晓科, 等. 锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2 合成工艺优化[J]. 无机盐工业, 2013, 45(6):54-56. |
[7] | SUN H H, CHOI W, LEE J K, et al. Control of electrochemical pro-perties of nickel-rich layered cathode materials for lithium ion bat-teries by variation of the manganese to cobalt ratio[J]. Journal of Po-wer Sources, 2015, 275:877-883. |
[8] | KONAROV A, MYUNG S T, SUN Y K. Cathode materials for future electric vehicles and energy storage systems[J]. ACS Energy Let-ters, 2017, 2(3):703-708. |
[9] | AMIN R, RAVNSBAEK D B, CHIANG Y M. Characterization of electronic and ionic transport in Li1-xNi0.8Co0.15Al0.05O2(NCA)[J]. Jo-urnal of the Electrochemical Society, 2015, 162(7):A1163-A1169. |
[10] | TRAN H Y, TUBERT C, WOHLFAHRT M M. Influence of the tec-hnical process parameters on structural,mechanical and electro-chemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes-A re-view[J]. Progress in Solid State Chemistry, 2014, 42(4):118-127. |
[11] | SCHIPPER F, ERICKSON E M, ERK C, et al. Review-recent ad-vances and remaining challenges for lithium ion battery cathodes:I.Nickel-rich,LiNixCoyMnzO2[J]. Journal of the Electrochemical Society, 2017, 164(1):A6220-A6228. |
[12] | WOO S U, YOON C S, AMINE K, et al. Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials[J]. Journal of the Electrochemical Society, 2007, 154(11):A1005-A1009. |
[13] | ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells[J]. Electrochemistry Communications, 2002, 4(8):620-625. |
[14] | 苏庆安, 李伟, 李普良, 等. LiNi0.6Co0.1+xMn0.3-xO2(x=0,0.1)正极材料的合成与电化学性能研究[J]. 电源技术, 2019, 43(11):1749-1751,1781. |
[15] | TORCHIO R, MARINI C, KVASHNIN Y O, et al. Structure and magnetism of cobalt at high pressure and low temperature[J]. Phy-sical Review B, 2016, 94(2).Doi: 10.1103/PhysRevB.94.024429. |
[16] | ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials:An automotive industry perspective[J]. Journal of Ma-terials Chemistry A, 2015, 3(13):6709-6732. |
[17] | PING H, YU H, LI D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9):3680-3695. |
[18] | LI H, CORMIER M, ZHANG N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?[J]. Journal of the Electrochemical Society, 2019, 166(4):A429-A439. |
[19] | LI M, LU J. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481):979-980. |
[20] | KIM Y, SEONG W M, MANTHIRAM A. Cobalt-free,high-nickel layered oxide cathodes for lithium-ion batteries:Progress,challen-ges,and perspectives[J]. Energy Storage Materials, 2021, 34:250-259. |
[21] | LIU X, XU G L, YIN L, et al. Probing the thermal-driven structu-ral and chemical degradation of Ni-Rich layered cathodes by Co/Mn exchange[J]. Journal of the American Chemical Society, 2020, 142(46):19745-19753. |
/
〈 |
|
〉 |