化学交联聚酰亚胺隔膜增强锂离子电池性能研究
收稿日期: 2021-06-28
网络出版日期: 2021-11-15
Study on chemically crosslinked polyimide separators for lithium-ion batteries with enhanced performance
Received date: 2021-06-28
Online published: 2021-11-15
隔膜作为锂离子电池的重要组成部分,用于阻隔阴极和阳极直接接触,同时为锂离子在电极间的传输提供有效通道。聚酰亚胺隔膜因其具有充放电循环寿命长、机械强度适中、良好的电绝缘性能以及自熄能力等优点,而受到广泛关注。以对苯二甲胺作为交联剂,将聚酰亚胺隔膜进行化学交联,研究了交联时间与隔膜形貌、结构及性能之间的构效关系。随着交联时间的增加,隔膜的孔隙率和吸液率逐渐降低,电解液接触角和机械强度逐渐增大。电化学测试表明,随着交联时间的增加,隔膜的本体阻抗逐渐增大,进而离子电导率逐渐降低,而交联隔膜的界面阻抗均远小于未交联隔膜,且交联隔膜的电化学窗口也均大于未交联隔膜。通过组装半电池测试发现,交联隔膜所组装电池的倍率性能和循环性能均优于未交联隔膜,当交联时间为48 h时,电池性能表现最优,循环100次以后,放电比容量为130.2 mA·h/g,容量保留率为91.1%。
袁标 , 石雅珂 , 陈赞 . 化学交联聚酰亚胺隔膜增强锂离子电池性能研究[J]. 无机盐工业, 2021 , 53(11) : 42 -48 . DOI: 10.19964/j.issn.1006-4990.2021-0389
As an important part of lithium-ion batteries,separators are used to block the direct contact between cathode and anode and provide an effective channel for lithium ion transmission between electrodes.Polyimide separators have been wide-ly concerned because of their long charge-discharge cycle life,moderate mechanical strength,good electrical insulation and self extinguishing ability.Polyimide separators were chemically crosslinked by using p-dimethylamine as crosslinking agent,the structure-activity relationship between the crosslinking time and the morphology,structure and properties of separators was studied.With the increase of crosslinking time,the porosity and liquid absorption rate of separators decreased,and the contact angle of the electrolyte and mechanical strength increased gradually.Electrochemical tests showed that with the increase of crosslinking time,the bulk impedance of separators increased gradually and the ionic conductivity decreased gradu-ally.The interfacial resistance of crosslinked separators was much lower than that of uncrosslinked separators,and the electro chemical window of crosslinked separators was also broader than that of uncrosslinked separators.The test result of assembling half cell showed that the rate performance and cycle performance of battery assembled by crosslinked separators were better than those of uncrosslinked separators.When the crosslinking time was 48 h,the performance of battery was best.After 100 charge-discharge cycles,the specific discharge capacity was 130.2 mA·h/g and the capacity retention rate was 91.1%.
Key words: lithium-ion battery; polyimide; separators; crosslinked
[1] | 杨永钰, 高婷婷, 田朋, 等. 无机超细粉体改性锂离子电池隔膜的研究进展[J]. 无机盐工业, 2021, 53(6):49-58. |
[2] | 孙新华, 侯雷, 秦凯. 锂离子电池电解质六氟磷酸锂市场分析[J]. 无机盐工业, 2021, 53(3):7-11. |
[3] | 李卫, 田文怀, 其鲁. 锂离子电池正极材料技术研究进展[J]. 无机盐工业, 2015, 47(6):1-5. |
[4] | 孙培亮, 孙新华, 陈世娟, 等. 锂离子动力电池用二氟磷酸锂的制备研究[J]. 无机盐工业, 2019, 51(1):39-42. |
[5] | LAGADEC M F, ZAHN R and WOOD V. Characterization and per-formance evaluation of lithium-ion battery separators[J]. Nature En-ergy, 2019, 4(1):16-25. |
[6] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy Envi-ronmental Science, 2011, 4(9):3243-3262. |
[7] | CHENG F, LIANG J, TAO Z, et al. Functional materials for rechar-geable batteries[J]. Advanced Materials, 2011, 23(15):1695-1715. |
[8] | RYOU M H, LEE Y M, PARK J K, et al. Mussel-inspired polydopa-mine-treated polyethylene separators for high-power Li-ion batte-ries[J]. Advanced Materials, 2011, 23(27):3066-3070. |
[9] | WANG L, DENG N, JU J, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable elec-trochemical performance[J]. Electrochimica Acta, 2019, 300:263-273. |
[10] | ZHAO H, KANG W, DENG N, et al. A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery[J]. Chemical Engineering Jo-urnal, 2020, 384.Doi: 10.1016/j.cej.2019.123312. |
[11] | XU H, LI D, LIU Y, et al. Preparation of halloysite/polyvinylidene fluoride composite membrane by phase inversion method for lithi-um ion battery[J]. Journal of Alloys Compounds, 2019, 790:305-315. |
[12] | SHI X, SUN Q, BOATENG B, et al. A quasi-solid composite sepa-rator with high ductility for safe and high-performance lithium-ion batteries[J]. Journal of Power Sources, 2019, 414:225-232. |
[13] | ZHANG S, ERVIN M, XU K, et al. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable li-thium battery[J]. Electrochimica Acta, 2004, 49(20):3339-3345. |
[14] | l′ABEE R, DAROSA F, ARMSTRONG M J, et al. High tempera-ture stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility[J]. Journal of Power Sources, 2017, 345:202-211. |
[15] | ZHANG H, LIN C E, ZHOU M Y, et al. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries[J]. Ele-ctrochimica Acta, 2016, 187:125-133. |
[16] | ZHANG H, ZHANG Y, YAO Z, et al. Novel configuration of polyi-mide matrix-enhanced cross-linked gel separator for high perfor-mance lithium ion batteries[J]. Electrochimica Acta, 2016, 204:176-182. |
[17] | WANG Y, WANG S, FANG J, et al. A nano-silica modified polyi-mide nanofiber separator with enhanced thermal and wetting prop-erties for high safety lithium-ion batteries[J]. Journal of Membrane Science, 2017, 537:248-254. |
[18] | YAN X, WANG Y, YU T, et al. Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries[J]. Electrochimica Acta, 2016, 216:1-7. |
[19] | SMITH S A, WILLIAMS B P, JOO Y L. Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators[J]. Journal of Mem-brane Science, 2017, 526:315-322. |
[20] | SHI J, HU H, XIA Y, et al. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(24):9134-9141. |
[21] | CHUNG T S, SHAO L and TIN P S. Surface modification of polyi-mide membranes by diamines for H2 and CO2 separation[J]. Macro-molecular Rapid Communications, 2006, 27(13):998-1003. |
[22] | CHOI S H, JANSEN J C, TASSELLI F, et al. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membr-anes for H2/CO2 separation[J]. Separation Purification Technology, 2010, 76(2):132-139. |
[23] | AHMAD M Z, PELLETIER H, MARTIN-GIL V, et al. Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation[J]. Membranes, 2018, 8(3).Doi: 10.3390/mem-branes8030067. |
[24] | MANGINDAAN D W, WOON N M, SHI G M, et al. P84 polyimide membranes modified by a tripodal amine for enhanced pervapora-tion dehydration of acetone[J]. Chemical Engineering Science, 2015, 122:14-23. |
[25] | XU S, LIU L and WANG Y. Network cross-linking of polyimide membranes for pervaporation dehydration[J]. Separation Purifica-tion Technology, 2017, 185:215-226. |
[26] | 戚律, 周元冲, 徐荣, 等. P84 共聚聚酰亚胺-聚乙烯吡咯烷酮/聚丙烯腈复合膜的制备及其渗透汽化分离甲醇/四氢呋喃[J]. 化工进展, 2019, 38(2):971-978. |
[27] | 曹敏, 聚酰亚胺纳滤膜的交联改性及其用于润滑油溶剂回收研究[D]. 青岛:中国石油大学 (华东), 2013. |
[28] | 张永玲, 乙二胺改性聚酰亚胺纳滤膜的制备和耐溶剂性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014. |
[29] | 徐艳超, 新型聚酰亚胺基耐溶剂纳滤膜的构筑及其分离性能研究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
[30] | YURIAR-ARREDONDO K, ARMSTRONG M R, SHAN B, et al. Nanofiber-based Matrimid organogel membranes for battery separator[J]. Journal of Membrane Science, 2018, 546:158-164. |
/
〈 |
|
〉 |