二维层状纳米片材料制备及在电解水中应用的研究进展
收稿日期: 2020-12-02
网络出版日期: 2021-11-15
Research progress on the preparation of two-dimensional layered nanosheet materials and its application in electrolyzed water
Received date: 2020-12-02
Online published: 2021-11-15
高效、清洁的氢能被认为是化石能源最有潜力的替代能源之一。制氢方法中电解水制氢是非常简便、且易于规模化的一种方法,但是电解水过程中存在制氢能耗增加、成本升高等问题,因此制备能耗低、具有稳定催化效率的催化剂成为能源领域的研究热点。层状双金属氢氧化物(LDHs)由于具有独特的二维层状结构,使其组成易于调节、结构易于调控,因此具有高效的电催化活性。但是,LDHs存在尺寸大、厚度高的问题,导致电催化剂的活性位点的数目受限、本征活性低和电导率低,最终会影响LDHs的电催化性能。主要论述了LDHs的结构和电解机理以及作为电解水催化剂的研究现状,对目前存在的问题以及解决方法进行了归纳,并对未来的研究方向进行了展望。
王惠娟 , 王春玉 , 张琼 . 二维层状纳米片材料制备及在电解水中应用的研究进展[J]. 无机盐工业, 2021 , 53(11) : 25 -29 . DOI: 10.19964/j.issn.1006-4990.2020-0655
High-efficiency and clean hydrogen energy is considered to be one of the most potential alternative energy sources for fossil energy.In the hydrogen production method,the electrolysis of water to produce hydrogen is a very simple and easy to scale method,but there is an increase in the energy consumption and cost of hydrogen production in the process of electrolysis of water.Therefore,the preparation of catalyst with low energy consumption and stable catalytic efficiency has become a hotspotsin the research field of energy source.Layered double hydroxides(LDHs) have unique two-dimensional layered struc-ture,which makes their composition and structure easy to be controlled,so they have high-efficiency electrocatalytic activity.However,LDHs have the problems of large size and high thickness,which result in limited number of active sites of electro-catalysts,low intrinsic activity and low conductivity,which will eventually affect the electrocatalytic performance of LDHs.The structure and electrolysis mechanism of LDHs,as the current research status of water electrolysis catalysts was mainly discussed in this article.The current problem and solution were summarized and the future research direction was prospected.
Key words: LDHs; electrocatalyst; catalysis; progress
[1] | CHU C F, EBIE Y, XU K Q, et al. Characterization of microbial co-mmunity in the two-stage process for hydrogen and methane produc-tion from food waste[J]. Int.J.Hydrogen Energy, 2010, 35(15):8253-8261. |
[2] | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12):5217-5224. |
[3] | 孙海杰, 刘欣改, 陈志浩, 等. 二氧化硅负载钌催化剂催化氨硼烷水解产氢研究[J]. 无机盐工业, 2020, 52(5):81-85. |
[4] | SHANG X, DONG B, CHAI Y M, et al. In-situ electrochemical acti-vation designed hybrid electrocatalysts for water electrolysis[J]. Sci-en Bulletin, 2018(13):112-120. |
[5] | 刚建航, 董博华, 赵稳稳, 等. 硒化钨花状纳米晶的可控合成及电催化产氢性能研究[J]. 人工晶体学报, 2016, 45(8):2039-2043. |
[6] | LI N, AI L H, JIANG J, et al. Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis[J] Journal of Colloid And Inter-face Science, 2020, 564:418-427. |
[7] | KONG F D, ZHANG S, YIN G P, et al. Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen catalyst for unitized regenerative fuel cell[J]. Journal of Power Sources, 2012, 210:321-326. |
[8] | GUO B Y, ZHANG X Y, MA X, et al. RuO2/Co3O4 Nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution[J]. International Journal of Hydrogen Energy, 2020, 45:9575-9582. |
[9] | SHAN J Q, GUO C X, ZHU Y H, et al. Charge redistribution-enhan-ced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2):445-459. |
[10] | 谢博尧, 张纪梅, 郝帅帅, 等. 层状双氢氧化物析氧催化剂的研究进展[J]. 材料工程, 2020, 48(1):1-9. |
[11] | 詹天荣, 侯万国. 层状双金属氢氧化物在绿色材料领域中的应用[J]. 化学通报, 2010, 73(7) :608-615. |
[12] | CHEN S, YANG F, CAO Z F, et al. Enhanced photocatalytic acti-tivity of molybdenum disulfide by compositing ZnAl-LDH[J]. Co-lloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 586.Doi: 10.1016/j.colsurfa.2019.124140. |
[13] | DING T D, LIN K D, CHEN J, et al. Causes and mechanisms on the toxicity of layered double hydroxide (LDH) to green algae Scene-desmus quadricauda[J]. Science of the Total Environment, 2018, 635.Doi: 10.1016/j.scitotenv.2018.04.222. |
[14] | 杨炳元, 王忠维, 麻彦龙. 层状双金属氢氧化物在金属腐蚀防护领域的研究进展[J], 表面技术, 2020, 49(12):127-137. |
[15] | 鞠晓丹, 田惠文, 刘昂, 等. ZnTi层状双氢氧化物的制备及其缓蚀和抑菌性能研究[J]. 表面技术, 2020, 49(11):245-251. |
[16] | ZHANG S C, LIU Z F, CHEN D, et al. Oxygen vacancies engineer-ing in TiO2 homojunction/ZnFe-LDH for enhanced photoelectro-chemical water oxidation[J]. Chemical Engineering Journal, 2020, 395.Doi: 10.1016/j.cej.2020.125101. |
[17] | TAN X, MA Z Q, HE K, et al. Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plate-au and its surroundings[J]. Journal of Hydrology, 2020, 582:112-123. |
[18] | 韩银凤, 张瑞林. 以泡沫镍为基底的纳米片层状Ni2+-Fe3+-V3+ LDHs的制备及其电催化析氧性能研究[J]. 化学试剂, 2020, 42(1):8-12. |
[19] | 宋明龙, 龙小柱. 镍掺杂锌铝层状双氢氧化物光催化剂的研究[J]. 化工新型材料, 2020, 48(4):191-195. |
[20] | 王燕勇. 层状双金属氢氧化物及其衍生物电催化性能的研究[D]. 长沙:湖南大学, 2018. |
[21] | OCTAVIAN D P, STAMATE A E, RODICA Z, et al. Mechano-che-mical versus co-precipitation for the preparation of Y-modified LDHs for cyclohexene oxidation and Claisen-Schmidt condensa-tions[J]. Applied Catalysis A:General, 2020, 605(5).Doi: org/10.1016/j.apcata.2020.117797 |
[22] | 庄巍, 郭为民. Nd掺杂的Ni-Al LDHs的制备及其电化学性能研究[J]. 电源技术, 2017(9):1327-1331. |
[23] | QIAN L, CHEN W, LIU M M, et al. One-step electrodeposition of S-doped Cobalt-Nickel layered double hydroxides on conductive substrates and their electrocatalytic activity in alkaline media[J]. ChemElectroChen, 2016, 3(6):950-958. |
[24] | SAHAR R, GHODSI M Z, ABOLFAZL Z, et al. Designer 3D Co-Al-layered double hydroxide@N,S doped graphenehollow archi-tecture decorated with Pd nanoparticles for Sonogashira couplin-gs[J]. Applied Surface Science, 2019, 496(1).Doi: 10.1016/j.apsusc.2019.143599. |
[25] | LI S Z, LIU J Y, DUAN S, et al. Electrocatalytic performance of sul-fur-doped nickel-iron layered double hydroxide for oxygen evolution[J]. Chinese Journal of Catalysis, 2020, 41(5):847-852. |
[26] | XIAO Y H, SU D C, WANG X Z. Research on layer spacing adjus-tment of layered bishydroxy composite metal oxide and its capaci-tor performance[J]. Science China Materials, 2018, 61(2):263-272. |
[27] | 狄广兰, 朱志良. 层状双金属氢氧化物基光催化剂研究进展[J]. 化学通报, 2017, 80(3):230-238. |
[28] | LONG X, LI J K, XIAO S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie(Internatio-nal ed.in English), 2014, 53(29):7584-7592. |
[29] | CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor elec-trode materials[J]. Advanced Functional Materials, 2014, 24(7):934-942. |
[30] | RAJMOHAN R, NALLAL M, KANG H, et al. Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J]. Journal of Colloid and Interface Science, 2020, 566:224-233. |
[31] | 贺学智, 李炳杰, 吴志坚, 等. 层状双金属氢氧化物Zn(Cu)/Al-LDHs 的制备及其光催化还原二氧化碳的研究[J]. 分子催化, 2013, 27(1):70-75. |
[32] | DINH K N, ZHENG P L, DAI Z F, et al. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctio-nal electrocatalyst for overall water splitting[J]. Small, 2018, 14(8):170-181. |
[33] | LI Y, ZHANG L, XIANG X, et al. Engineering of ZnCo-layered do-uble hydroxide nanowalls toward high-efficiency electrochemical water oxidation[J]. Journal of Materials Chemistry A, 2014, 33(2):13250-13258. |
[34] | 任锦, 梁良, 周瑜, 等. 功能化层状双金属氢氧化物材料的应用进展[J]. 材料科学与工程学报, 2019, 28(3):1879-1883. |
[35] | GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered dou-ble hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23):8452-8455. |
[36] | YU C, LIU Z B, HAN X T, et al. NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free highac-tive electrocatalysts for water oxidation[J]. Carbon, 2016, 110:1-7. |
[37] | JIA Y, ZHANG L, GAO G, et al. A heterostructure coupling of ex-foliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials, 2017, 29(17).Doi: 10.1002/adma.201700017. |
[38] | HAN N, ZHAO F P, LI Y G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for elec-trocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2015(3):16348-16353. |
[39] | XIA D C, ZHOU L, QIAO S, et al. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxi-dation[J]. Materials Research Bulletin, 2016, 74(2):441-446. |
[40] | 龙霞, 王亚, 琼鞠敏, 等. 过渡金属基层状双羟基化合物的调控及其在电化学水氧化中的应用[J]. 应用化学, 2018, 35(8):881-890. |
[41] | LIU R, WANG Y Y, LIU D D, et al. Water-plasma-enabled exfoli-ation of ultrathin layered double hydroxide nanosheets with multi-vacancies for water oxidation[J]. Advanced Materials, 2017, 29(30).Doi: org/10.1002/adma.201701546. |
[42] | WANG Y, ZHANG Y, LIU Z, et al. Layered double hydroxide nano-sheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21):5867-5871. |
/
〈 |
|
〉 |