收稿日期: 2021-01-22
网络出版日期: 2021-11-15
基金资助
内蒙古自治区高等学校科学研究项目(NJZY19243);乌梁素海流域山水林田湖草生态保护修复试点工程支持计划项目(2019HYYSZX);河套学院引进人才科研启动项目(HYRC2019001);河套学院巴彦淖尔生态治理和绿色发展院士专家工作站建设项目(YSZ2018-1)
Study on preparation of Fe/modified MCM-41 catalyst with different loading methods and degradation of methylene blue
Received date: 2021-01-22
Online published: 2021-11-15
宋瑾 , 吴凤龙 , 王岳俊 . 不同负载方式Fe/改性MCM-41催化剂的制备及其降解亚甲基蓝性能研究[J]. 无机盐工业, 2021 , 53(11) : 122 -128 . DOI: 10.19964/j.issn.1006-4990.2021-0051
The modified MCM-41 with Poly(styrene-3-methacryloxy propyltrimethoxy silane) supported iron-based hetero-geneous catalysts were synthesized and worked as support.The iron-based heterogeneous catalysts were prepared by impregna-tion,in situ loading and NaBH4 reduction for loading active metals.The activity of the three kinds of catalysts for degradation of methylene blue was systematically investigated.The results showed that among the catalysts, the catalyst prepared by impregnation showed the best activity with 81.2% removal rate of methylene blue at 25 min.At the same time,XRD,TEM,FTIR, XPS and mercury porosimetry were employed to investigate the reason of excellent catalytic performance.The characterization result indicated that synergistic effect of the interaction between Fe and modified MCM-41 and the pore structure of catalyst were responsible for catalytic performance.
Key words: MCM-41; methylene blue; supported catalyst
[1] | BELLO M M, RAMAN A A A, ASGHAR A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment[J]. Process Saf.Environ., 2019, 126:119-140. |
[2] | 陶洋, 张璨, 孙永军. 非均相类Fenton技术研究进展[J]. 山东化工, 2020, 49(9):66-68. |
[3] | CHENG M, LAI C, LIU Y, et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis[J]. CoordinChemRev, 2018, 368:80-92. |
[4] | 种延竹, 张爱文. 改性MCM-41分子筛的合成与亚甲基蓝吸附性能[J]. 无机盐工业, 2020, 52(5):90-93. |
[5] | KUMAR A, RANA A, SHARMA G, et al. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contami-nants[J]. Journal of Molecular Liquids, 2019, 290.Doi: 10.1016/j.molliq.2019.111177. |
[6] | 李蓉, 吴小宁, 王倩, 等. 非均相类Fenton体系中降解水中染料的固体催化剂研究进展[J]. 净水技术, 2019, 38(4):70-73,100. |
[7] | 李会峰, 李明丰, 聂红. 不同制备方法对MoO3/Al2O3催化剂的钼分散性及HDS性能的影响[C]// 第十六届全国催化学术会议论文集.北京:中国化学会, 2012:1-2. |
[8] | 马燕辉, 赵会玲, 唐圣杰, 等. 微孔/介孔复合分子筛的合成及其对CO2的吸附性能[J]. 物理化学学报, 2011, 27(3):689-696. |
[9] | YAO Q, LU Z-H, YANG Y, et al. Facile synjournal of graphene-su-pported Ni-CeOx nanocomposites as highly efficient catalysts for hy-drolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018, 11(8):4412-4422. |
[10] | 尹冯懿, 孙思杰, 付朋, 等. Cu/ZnO在醋酸甲酯加氢制乙醇反应中失活原因分析[C]// 第十四届全国青年催化学术会议论文集.长春:中国化学会催化委员会, 2013: 2. |
[11] | 聂明星. 铁基氧化物非均相类Fenton催化剂的制备及其对四环素的降解研究[D]. 合肥:中国科学技术大学, 2020. |
[12] | 刘苗. 铁基催化剂与等离子体协同催化二氧化碳加氢制甲醇[D]. 大连:大连理工大学, 2020. |
[13] | LIU J, ZOU S, XIAO L, et al. Well-dispersed bimetallic nanoparti-cles confined in mesoporous metal oxides and their optimized cat-alytic activity for nitrobenzene hydrogenation[J]. Catalysis Science Technology, 2014, 4:441-446. |
[14] | 李石雄. 给电子基团调控光催化剂对有机污染物的氧化降解:机理研究和材料功能增强[D]. 广州:华南理工大学, 2018. |
[15] | 张建民, 王阿宁, 李红玑, 等. 3种改性Hummers法对氧化石墨的结构和亚甲基蓝吸附性能影响[J]. 粉末冶金技术, 2018, 36(1):16-20,35. |
/
〈 |
|
〉 |