无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

蚀刻废液制备多种单一晶型碱式氯化铜及性能分析

  • 杨军芳 ,
  • 周桓 ,
  • 查正炯 ,
  • 王永成
展开
  • 1.天津科技大学化工与材料学院,天津市卤水化工与资源生态化利用重点实验室,天津 300457
    2.广州科城环保技术有限公司
杨军芳(1991— ),女,硕士研究生,研究方向为卤水化工与资源生态化利用;E-mail: 1145642762@qq.com

收稿日期: 2021-02-08

  网络出版日期: 2021-11-15

基金资助

国家自然科学基金资助项目(U1707602);国家自然科学基金资助项目(U1407204)

Preparation process and product characterization of various copper oxychloride with respective crystal form from etching waste solution

  • Junfang YANG ,
  • Huan ZHOU ,
  • Zhengjiong ZHA ,
  • Yongcheng WANG
Expand
  • 1. College of Chemical Engineering and Materials,Tianjin University of Science & Technology,Tianjin Key Lab of Brine Chemical Engineering and Ecological Utilization of Resources,Tianjin 300457,China
    2. Guamgzhou Cosmo Environmental Technology Co.,Ltd.

Received date: 2021-02-08

  Online published: 2021-11-15

摘要

以印刷电路板蚀刻废液为原料生产碱式氯化铜的过程存在产物多种晶型混杂的问题,影响产品的纯度和性能。为获得纯正的晶型产品,以酸、碱蚀刻废液为原料,通过改变连续反应结晶过程的加料速率、反应温度、pH等条件,获得了A型(Atacamite)、B型(Botallackite)和C型(Clinoatacamite)3种单一晶型产物。3种产物中单一晶型纯度分别为99.0%(A型)、99.7%(B型)和90.7%(C型)。3种产物的XRD和SEM分析表明:A型属正交晶系,为长条片状聚集物;B型属单斜晶系,为正六棱柱单晶聚集物;C型属单斜晶系,为不规则片状聚集体。3种产物的化学分析和TG-DSC热分析表明:A、B、C 3种结晶形态具有不同的化学式,分别为A型Cu4(OH)6Cl2·H2O、B型Cu5(OH)8Cl2和C型CuCl2·3Cu(OH)2·0.5H2O;3种产物具有不同的热分解活化能和分解热。B型碱式氯化铜在3种产物中含铜量最高,且热稳定性最强,是碱式氯化铜生产中最好的晶型产物。

本文引用格式

杨军芳 , 周桓 , 查正炯 , 王永成 . 蚀刻废液制备多种单一晶型碱式氯化铜及性能分析[J]. 无机盐工业, 2021 , 53(11) : 107 -113 . DOI: 10.19964/j.issn.1006-4990.2021-0092

Abstract

Copper oxychloride produced from the reaction of acid and alkaline etching waste solution of printed circuit board are normal the mixture of multiple crystal forms,which affects the purity and performance of product.In order to produce copper oxychloride with single crystal form,the reaction conditions of feeding rate,temperature,pH were optimized in the continue crystallization process,and the products with single crystal form of Atacamite(type-A),Botallackite(type-B) and Clinoatacamite(type-C) and with the respective purity of 99.0%,99.7% and 90.7% were obtained.The XRD and SEM results showed that type-A crystal belonged to orthorhombic and was the long strip and flake aggregates;type-B crystal belonged to monoclinic and was the hexagonal single crystal aggregates;type-C crystal also belonged to monoclinic but was the irregular flaky aggregates.Chemical analysis and TG-DSC showed that the molecular formula of A,B and C products was Cu4(OH)6Cl2·H2O,Cu5(OH)8Cl2 and CuCl2·3Cu(OH)2·0.5H2O,respectively.The activation energy and heat of decomposition of A,B and C products were different.Among the three products,B-type copper oxychloride had the highest copper content and the strongest thermal stability,which was the best crystal product in copper oxychloride production.

参考文献

[1] 汤政涛, 刘后传, 李丽敏, 等. 酸性氯化铜蚀刻废液一步沉淀法制备碱式碳酸铜[J]. 化工环保, 2021, 41(1):71-76.
[2] HAWTHORNE F C. Refinement of the crystal structure of Botallac-kite[J]. Mineralogical Magazine, 1985, 49:87-89.
[3] JAMBOR J L, DUTRIZAC J E, ROBERTS A C, et al. Clinoataca-mite,a new polymorph of Cu2(OH)3Cl,and its relationship to para-tacamite and “Anarakite”[J]. The Canadian Mineralogist, 1996, 34(1):73-78.
[4] WELLS A F. The crystal structure of atacamite and the crystal che-mistry of cupric compounds[J]. Acta Crystallographica, 2010, 2(3):175-180.
[5] OSWALD H R, GUENTER J R. Crystal data on paratacamite,γ-Cu2(OH)3Cl[J]. Journal of Applied Crystallography, 2010, 4(6):530-531.
[6] 刘杨, 吴阳东, 王永成. 饲料添加剂碱式氯化铜晶体结构研究[J]. 广东饲料, 2014, 23(3):32-33.
[7] 温炎燊, 谭路生, 谢钧燕, 等. 再生工业碱式氯化铜产品的质量检验[J]. 中国石油和化工标准与质量, 2017, 37(23):33-34,36.
[8] 刘杨, 吴阳东. 饲料添加剂碱式氯化铜防结块研究[J]. 广东饲料, 2018, 27(4):45-46.
[9] 丁光东. 一种利用含铜废蚀刻液生产碱式氯化铜的方法[J]. 科技经济导刊, 2015, 179(6):275.
[10] 兰永辉, 许世爱, 高仁富. 再生资源产品(α-晶型)与(β-晶型)碱式氯化铜的鉴别方法研究[J]. 资源再生, 2012(10):54-55.
[11] 石荣铭, 钟国清. 利用废铜腐蚀液制取饲料添加剂碱式氯化铜[J]. 中国饲料, 2006(1):25-26.
[12] 王莹, 王玉超, 李光明. HG/T 4826—2015《工业碱式氯化铜》[J]. 无机盐工业, 2018, 50(6):77.
[13] 程龙军, 李钧, 温炎燊, 等. 饲料级碱式氯化铜性质特征分析研究[J]. 无机盐工业, 2019, 51(9):88-90.
[14] MOTHé C G, MIRANDA I C D. Study of kinetic parameters of ther-mal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(2):497-505.
[15] OZAWA T. Kinetic analysis by repeated temperature scanning.Part 1.Theory and methods[J]. Thermochimica Acta, 2000, 356(1/2):173-180.
[16] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[17] 邓庚凤, 姬传红, 谢耀, 等. 十水草酸镧的热分解及其动力学分析[J]. 材料与冶金学报, 2017, 16(2):116-123.
[18] 胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M].2版. 北京: 科学出版社, 2008.
文章导航

/