收稿日期: 2021-01-28
网络出版日期: 2021-11-15
基金资助
国家自然科学基金面上项目(52072180)
Study on preparation of nanometer iron oxide and its kinetics by CC-OA DES treatment of iron-containing dust
Received date: 2021-01-28
Online published: 2021-11-15
针对钢铁厂含铁尘泥低附加值的问题,以氯化胆碱-二水合草酸(CC-OA)低共熔溶剂(DES)为研究体系,以钢厂含铁粉尘(经水洗处理)为研究对象,提出了运用氯化胆碱-二水合草酸低共熔溶剂处理含铁粉尘固相前驱体热分解法制备纳米氧化铁,并对处理过程中前驱体热分解及纳米氧化铁晶粒生长进行动力学分析。研究表明:处理过程中得到的前驱体为FeC2O4·2H2O,以其热分解第二阶段为热分析动力学的研究目标,根据Ozawa方程法、Kissinger-Akahira-Sunose方程法和Starink方程法3种等转化率法得到的平均反应活化能为220.54 kJ/mol。前驱体焙烧的最佳条件:焙烧温度为673 K、焙烧时间为1 h。根据唯象方程计算出纳米氧化铁的晶粒生长平均激活能为39.06 kJ/mol,并得到了焙烧温度、焙烧时间与粒径的关系,实现特定粒径纳米氧化铁的制备。最佳焙烧条件下得到的纳米氧化铁纯度达99.67%,扫描电镜下观察其颗粒呈现不规则的立方晶体结构,粒径主要分布在10~100 nm。
曹雪辰 , 周东杰 , 姚海威 , 居殿春 . 氯化胆碱-草酸低共熔溶剂处理含铁尘泥制备纳米氧化铁及动力学研究[J]. 无机盐工业, 2021 , 53(11) : 100 -106 . DOI: 10.19964/j.issn.1006-4990.2021-0067
To address the problem of low comprehensive utilization rate of iron-containing dust sludge in steel mills,choline chloride-oxalic acid dihydrate low eutectic solvent(CC-OA DES) was used as the research system,and iron oxide nanoparti-cles were prepared by the thermal decomposition of solid-phase precursors of iron-containing dust treated with CC-OA low eutectic solvent(treated by water washing).The kinetic analysis of the thermal decomposition of the precursor and the growth of iron oxide grains during the treatment was carried out. It was shown that the precursor obtained during the treatment process was FeC2O4·2H2O,and the kinetics of its thermal analysis was targeted at the second stage of thermal decomposition,the average activation energy of 220.54 kJ/mol for the reaction obtained from the three isotropic methods of the Ozawa,Kissinger-Akahira-Sunose and Starink equations.The optimum conditions for precursor roasting: roasting temperature of 673 K and roasting time of 1 h;the average activation energy for grain growth of iron oxide nanoparticles was calculated to be 39.06 kJ/mol according to the only-image equation,and the relationship between roasting temperature,roasting time and grain size was obtained to achieve the preparation of iron oxide nanoparticles of specific grain size;the iron oxide nanoparticles obtained under the optimum roasting conditions had iron oxide with content of 99.67% and were observed an irregular cubic crystal structure under scanning electron microscopy,with particle sizes mainly in the range of 10~100 nm.
[1] | 曾丹林, 马亚丽, 王光辉, 等. 钢铁厂含铁粉尘综合利用研究进展[J]. 烧结球团, 2011, 36(6):45-49. |
[2] | 徐阳, 隋然, 周晶晶, 等. 钢铁尘泥的利用技术现状及展望[J]. 中国金属通报, 2019(4):123,125. |
[3] | 庄昌凌, 刘建华, 崔衡, 等. 炼钢过程含铁尘泥的基本物性与综合利用[J]. 北京科技大学学报, 2011, 33(S1):185-192. |
[4] | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent pro-perties of choline chloride/urea mixtures[J]. Chemical communica-tions(Cambridge,England), 2003(1).Doi: 10.1039/b210714g. |
[5] | ABBOTT A P, CAPPER G, DAVIES D L, et al. Processing metal oxi-des using ionic liquids[J]. Mineral Processing & Extractive Metall-urgy, 2006, 115(1):15-18. |
[6] | ABBOTT A P, CAPPER G, KATY J M, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chlo-ride[J]. Journal of Electroanalytical Chemistry, 2006, 599(2).Doi: 10.1016/j.jelechem.2006.04.024. |
[7] | 韦露, 樊友军. 低共熔溶剂及其应用研究进展[J]. 化学通报, 2011, 74(4):333-339. |
[8] | 白有灿. 氯化胆碱类低共熔溶剂高效分离木质纤维素及纤维素组分的利用[D]. 广州:华南理工大学, 2018. |
[9] | 魏光森. 低共熔溶剂制备及其用于吸收一氧化氮的性能研究[D]. 天津:天津大学, 2018. |
[10] | HOU Y C, KONG J, REN Y H, et al. Mass transfer dynamics in the separation of phenol from model oil with quaternary ammonium salts via forming deep eutectic solvents[J]. Separation and Purifica-tion Technology, 2017, 174:554-560. |
[11] | TANG W Y, LIU L L, LI G Z, et al. Optimal separation of phenol from model oils by forming deep eutectic solvents with quaternary ammonium salts[J]. Korean Journal of Chemical Engineering, 2017, 34(3).Doi: 0.1007/s11814-016-0316-y. |
[12] | CAO J, CAO J R, WANG H M, et al. Solubility improvement of phy-tochemicals using(natural) deep eutectic solvents and their bioac-tivity evaluation[J]. Journal of Molecular Liquids, 2020, 318.Doi: 10.1016/j.molliq.2020.113997. |
[13] | PÄTZOLD M, SIEBENHALLER S, KARA S, et al. Deep eutectic solvents as efficient solvents in biocatalysis[J]. Trends in Biotech-nology, 2019, 37(9).Doi: 10.1016/j.tibtech.2019.03.007. |
[14] | 杜俊荣, 王焕磊, 时婧, 等. ChCl-EG低共熔溶剂中Ni的电沉积行为研究[J]. 辽宁化工, 2020, 49(9):1052-1054,1058. |
[15] | 唐杰, 徐存英. 氯化胆碱-尿素低共熔溶剂中Cu(Ⅰ)离子的电化学性能研究[J]. 稀有金属与硬质合金, 2020, 48(3):18-24. |
[16] | 白芳, 华超, 李静, 等. 低共熔溶剂在萃取/萃取蒸馏分离中的研究进展[J]. 现代化工, 2017, 37(2):20-24. |
[17] | 黄强, 左文彬, 寸唐湘, 等. 基于低共熔溶剂的反溶剂沉淀法制备纳米结构材料[J]. 实验室研究与探索, 2015, 34(8):8-10,72. |
[18] | 王雨果. 基于低共熔溶剂对印刷线路板中铜回收的电化学研究[D]. 上海:上海师范大学, 2020. |
[19] | 居殿春, 姚海威, 麻晗, 等. ChCl-urea-ZnO低共熔溶剂体系热稳定性[J]. 高校化学工程学报, 2020, 34(6):1393-1400. |
[20] | ABBOTT A P, CAPPER G, DAVIES D L, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. Jo-urnal of Chemical & Engineering Data, 2006, 51(4):1280-1282. |
[21] | RONG G Y, MEI L W, TING L, et al. Room temperature solid state synjournal,characterization,and application of a zinc complex with pyromellitic acid[J]. Crystals, 2018, 8(2):56-59. |
[22] | 毛春峰, 赵荣祥, 李秀萍. 氯化胆碱/草酸低共熔溶剂高效脱除模拟油中硫[J]. 化学工程, 2017, 45(5):6-10. |
[23] | 雷震. 低共熔溶剂处理含锌烟尘的研究[D]. 昆明:昆明理工大学, 2017. |
[24] | 张远, 李林菲, 李坚, 等. 氯化胆碱-水合草酸低共熔溶剂中ZnO的溶解行为[J]. 中南大学学报:自然科学版, 2016, 47(8):2591-2599. |
[25] | 张湘辉, 钟玉馨, 汪灵, 等. 基于等转化法及多元非线性拟合的高岭石非等温脱羟基动力学分析[J]. 矿物岩石, 2019, 39(2):1-7. |
[26] | MOHAMED A R, LI N, AHMAD SOHAIMI K S, et al. Kinetic pa-rameters of non-isothermal thermogravimetric non-catalytic and cat-alytic pyrolysis of empty fruit bunch with alumina by kissinger and ozawa methods[J]. IOP Conference Series:Materials Science and En-gineering, 2018, 318(1).Doi: 10.1088/1757-899X/318/1/012019. |
[27] | GUIDA M Y, BOUAIK H, EL MOUDEN L, et al. Utilization of sta-rink approach and avrami theory to evaluate the kinetic parame-ters of the pyrolysis of olive mill solid waste and olive mill waste-water[J]. Journal of Advanced Chemical Engineering, 2017, 7(1).Doi: 10.4172/2090-4568.1000155. |
[28] | ZENOU V Y, BAKARDJIEVA S. Microstructural analysis of undo-ped and moderately Sc-doped TiO2 anatase nanoparticlesusing scherrer equation and debye function analysis[J]. Materials Char-acterization, 2018, 144:287-296. |
[29] | 徐卓, 姚熹. 铁电/反铁电陶瓷压致相变的热力学唯象理论[J]. 四川大学学报:自然科学版, 2005(S1):35. |
/
〈 |
|
〉 |