固态无机电解质Li7La3Zr2O12的改性研究进展
收稿日期: 2020-12-09
网络出版日期: 2021-11-15
基金资助
成都大学人才工程科研启动项目(2081921012);中国博士后科学基金面上资助项目(2016M602670)
Research progress on modification of solid inorganic electrolyte of Li7La3Zr2O12
Received date: 2020-12-09
Online published: 2021-11-15
作为一种固态无机电解质材料,石榴石型立方相Li7La3Zr2O12具有较高的室温锂离子电导率、较宽的电化学窗口和优良的热稳定性等特点,是高安全性、高能量密度固态锂离子电池实现商业化应用的关键。阐述了Li7La3Zr2O12的晶体结构与锂传导机理,综述了元素掺杂、聚合物电解质复合、烧结助剂引入、表面包覆或修饰等方式对Li7La3Zr2O12的物相结构稳定性、界面阻抗与相容性、烧结活性、离子电导率等进行改性的最新研究进展。最后,针对Li7La3Zr2O12在产业化应用中所面临的障碍与挑战,提出了制备新工艺的开发、离子电导率的多重改性以及柔性复合电解质膜的结构设计与优化等应对策略,为推动高性能固态锂离子电池的发展提供依据。
关键词: Li7La3Zr2O12; 锂离子电池; 固态电解质; 离子电导率
卢超 , 李明明 , 吴小强 , 安旭光 , 孔清泉 , 王小炼 . 固态无机电解质Li7La3Zr2O12的改性研究进展[J]. 无机盐工业, 2021 , 53(11) : 10 -16 . DOI: 10.19964/j.issn.1006-4990.2020-0666
As a solid inorganic electrolyte material,Li7La3Zr2O12 in cubic garnet phase has advantages of high lithium ion con-ductivity at room-temperature,wide electrochemical window and excellent thermal stability,which is the key to the commer-cial application of solid lithium ion batteries with high safety and high energy density.The crystal structure and lithium con-duction mechanism of Li7La3Zr2O12were described,and the recent advances in modification of phase structure stability,interfa-cial impedance and compatibility,sintering activity and ionic conductivity of Li7La3Zr2O12 by means of element doping,poly-mer electrolyte compounding,sintering additives introduction,surface coating or modification were reviewed.Finally,aiming at the obstacles and challenges in the industrial application of Li7La3Zr2O12,the countermeasures including development of new preparation process,multiple modification of ionic conductivity,and structure design and optimization of flexible compo-site electrolyte membrane were proposed, which could provide a basis for promoting the development of high-performance solid state lithium ion batteries.
[1] | BI K, ZHAO S X, HUANG C, et al. Improving low-temperature per-formance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O[J]. Journal of Power Sources, 2018, 389:240-248. |
[2] | LI W, YAO H, YAN K, et al. The synergetic effect of lithium poly-sulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat Commun, 2015, 6.Doi: org/10.1038/ncomms8436. |
[3] | LIU G, XIE D, WANG X, et al. High air-stability and superior lithi-um ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materi-als, 2019, 17:266-274. |
[4] | RAMASWAMY M, VENKATARAMAN T, WERNER W. Fast lithi-um ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed Engl, 2007, 46:7778-7781. |
[5] | AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synjournal and struc-ture analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8):2046-2052. |
[6] | LIU Q, GENG Z, HAN C, et al. Challenges and perspectives of gar-net solid electrolytes for all solid-state lithium batteries[J]. Journal of Power Sources, 2018, 389:120-134. |
[7] | BERNSTEIN N JOHANNES M D; HOANG K. Origin of the struc-tural phase transition in Li7La3Zr2O12[J]. Phys Rev Lett, 2012, 109(20).Doi: org/10.1103/PhysRevLett.109.205702. |
[8] | MUKHOPADHYAY S, THOMPSON T, SAKAMOTO J, et al. Struc-ture and stoichiometry in supervalent doped Li7La3Zr2O12[J]. Chemi-stry of Materials, 2015, 27(10):3658-3665. |
[9] | XIE H, ALONSO J A, LI Y, et al. Lithium distribution in aluminum-free cubic Li7La3Zr2O12[J]. Chemistry of Materials, 2011, 23(16):3587-3589. |
[10] | DÜVEL A, KUHN A, ROBBEN L, et al. Mechanosynjournal of solid electrolytes:Preparation,characterization,and Li ion transport pro-perties of garnet-type Al-Doped Li7La3Zr2O12 crystallizing with cubic symmetry[J]. The Journal of Physical Chemistry C, 2012, 116(29):15192-15202. |
[11] | WU J F, CHEN E Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 gar-net-type electrolytes with high lithium-ion conductivity[J]. ACS Appl Mater Interfaces, 2017, 9(2):1542-1552. |
[12] | WAGNER R, REDHAMMER G J, RETTENWANDER D, et al. Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with un-common I43d structure[J]. Chem Mater, 2016, 28(16):5943-5951. |
[13] | 吴润平, 朱琳, 洪涛, 等. 锌掺杂Li7La3Zr2O12 固体电解质材料的制备及电化学性能研究[J]. 冶金与材料, 2019, 39(3):1-3. |
[14] | 查文平, 李君阳, 阳敦杰, 等. 无机固体电解质Li7La3Zr2O12 的研究进展[J]. 中国材料进展, 2017, 36(10):700-707. |
[15] | BUSCHMANN H, BERENDTS S, MOGWITZ B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7-xLa3Zr2-xTaxO12 with garnet-type structure[J]. Journal of Power Sources, 2012, 206:236-244. |
[16] | CAO Z Z, REN W, LIU J R, et al. Microstructure and ionic conduc-tivity of Sb-doped Li7La3Zr2O12 ceramics[J]. Journal of Inorganic Materials, 2014, 29(2):220-224. |
[17] | 李雪妍, 罗亚历, 陈涵, 等. 掺杂量及烧结温度对W掺杂Li7La3Zr2O12 陶瓷电解质性能的影响[J]. 南京工业大学学报:自然科学版, 2020, 42(1):81-86. |
[18] | RETTENWANDER D, WELZL A, CHENG L, et al. Synjournal,cry-stal chemistry,and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1~0.4):Stabilization of the cubic garnet polymorph via subs-titution of Zr4+ by Mo6+[J]. Inorg Chem, 2015, 54(21):10440-10449. |
[19] | DUMON A, HUANG M, SHEN Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet[J]. Solid State Ionics, 2013, 243:36-41. |
[20] | YANG X, KONG D, CHEN Z, et al. Low-temperature fabrication for transparency Mg doping Li7La3Zr2O12 solid state electrolyte[J]. Journal of Materials Science:Materials in Electronics, 2017, 29(2):1523-1529. |
[21] | DEVIANNAPOORANI C, SHANKAR L S, RAMAKUMAR S, et al. Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12[J]. Ionics, 2016, 22(8):1281-1289. |
[22] | GU W, EZBIRI M, PRASADA RAO R, et al. Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12[J]. Solid State Ionics, 2015, 274:100-105. |
[23] | LU Y, MENG X, ALONSO J A, et al. Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2019, 11(2):2042-2049. |
[24] | LIU C, WEN Z Y, RUI K. High ion conductivity in garnet-type F-doped Li7La3Zr2O12[J]. Journal of Inorganic Materials, 2015, 30(9):995-1001. |
[25] | LIU B, FU K, GONG Y, et al. Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries[J]. Nano Lett, 2017, 17(8):4917-4923. |
[26] | 金英敏, 李栋, 贾政刚, 等. 用于全固态锂电池的有机-无机复合电解质[J]. 原子与分子物理学报, 2020, 37(6):958-973. |
[27] | 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题[J]. 物理学报, 2020, 69(22).Doi. org/10.7498/aps.69.20201191. |
[28] | 何丹农, 张道明, 张芳. 有机无机复合固态电解质的制备方法及其产品和应用:中国,201811558680.3[P]. 2018-06-07. |
[29] | ZHA W, CHEN F, YANG D, et al. High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries[J]. Journal of Power So-urces, 2018, 397:87-94. |
[30] | ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries:Fundamentals,key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23):8790-8839. |
[31] | ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity,mechanical strength,and thermal stability of solid composite electrolytes[J]. J Am Chem Soc, 2017, 139(39):13779-13785. |
[32] | ZHANG W, NIE J, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45:413-419. |
[33] | 郭甜, 陈昱锜, 何泓材, 等. 基于有机-无机复合固态电解质膜的全固态锂电池制备与性能研究[J]. 电子元件与材料, 2019, 38(7):25-31. |
[34] | ZHANG X, XU B Q, LIN Y H, et al. Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes[J]. Solid State Ionics, 2018, 327:32-38. |
[35] | TADANAGA K, TAKANO R, ICHINOSE T, et al. Low temperature synjournal of highly ion conductive Li7La3Zr2O12-Li3BO3 composit-es[J]. Electrochemistry Communications, 2013, 33:51-54. |
[36] | PERSHINA S V, IL′INA E A, REZNITSKIKH O G. Phase Compo-sition,Density,and Ionic Conductivity of the Li7La3Zr2O12-Based Composites with LiPO3 Glass Addition[J]. Inorg Chem, 2017, 56(16):9880-9891. |
[37] | JANANI N, RAMAKUMAR S, KANNAN S, et al. Optimization of lithium content and sintering aid for maximized Li+ conductivit du-ctivity and density in Ta-doped Li7La3Zr2O12[J]. Journal of the American Ceramic Society, 2015, 98(7):2039-2046. |
[38] | 吴学领, 苗艳丽, 王为, 等. 铌酸锂添加剂对石榴石型固体电解质Li6.75La3Zr1.75Sb0.25O12的致密度和离子电导率的影响[J]. 第31届全国化学与物理电源学术年会, 2015. |
[39] | TANG Y, ZHANG Q, LUO Z, et al. Effects of Li2O-Al2O3-SiO2 sy-stem glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte[J]. Materials Letters, 2017, 193:251-254. |
[40] | IL′INA E A, PERSHINA S V, ANTONOV B D, et al. The influence of the glass additive Li2O-B2O3-SiO2 on the phase composition, conductivity,and microstructure of the Li7La3Zr2O12[J]. Journal of Alloys and Compounds, 2018, 765:841-847. |
[41] | HUANG X, SHEN C, RUI K, et al. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet[J]. Jom, 2016, 68(10):2593-2600. |
[42] | KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12 /LiCoO2 interface modification for advanced all-solid-state batt-ery[J]. Journal of Power Sources, 2014, 260:292-298. |
[43] | WANG C, GONG Y, LIU B, et al. Conformal,nanoscale ZnO sur-face modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Lett, 2017, 17(1):565-571. |
[44] | XU H, LI Y, ZHOU A, et al. Li3N-modified garnet electrolyte for All-Solid-State lithium metal batteries operated at 40 degrees C[J]. Nano Lett, 2018, 18(11):7414-7418. |
[45] | KOTOBUKI M, KOISHI M. High conductive Al-free Y-doped Li7La3Zr2O12 prepared by spark plasma sintering[J]. Journal of Alloys and Compounds, 2020, 826.Doi. org/10.1016/j.jallcom.2020.154213. |
[46] | CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface is-sues in all-solid-state bulk-type lithium ion battery via an all-co-mposite approach[J]. ACS Appl Mater Interfaces, 2017, 9(11):9654-9661. |
[47] | ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J Am Chem Soc, 2016, 138(30):9385-9388. |
[48] | MIARA L J, ONG S P, MO Y, et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12(0≤x≤0.375,0≤y≤1) superionic conductor:A first principles investigation[J]. Chemistry of Materials, 2013, 25(15):3048-3055. |
[49] | SONG S, QIN X, RUAN Y, et al. Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte[J]. Journal of Power Sources, 2020, 461.Doi. org/10.1016/j.jpowsour.2020.228146. |
[50] | ZHANG W, WANG X, ZHANG Q, et al. Li7La3Zr2O12 ceramic nano-fiber-incorporated solid polymer electrolytes for flexible lithium batteries[J]. ACS Applied Energy Materials, 2020, 3(6):5238-5246. |
[51] | WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-st-ate electrolytes:Materials,interfaces,and batteries[J]. ChemRev, 2020, 120(10):4257-4300. |
[52] | MCOWEN D W, XU S, GONG Y, et al. 3D-printing electrolytes for solid-state batteries[J]. AdvMater, 2018, 30(18).Doi. org/10.1002/adma.201707132. |
/
〈 |
|
〉 |