二硫化钼基全pH电催化析氢材料研究进展
收稿日期: 2020-12-14
网络出版日期: 2021-11-15
基金资助
国家自然科学基金资助(青年基金:52002359);河南省重点研发与推广专项科技攻关(192102210018)
Research progress on pH-universal MoS2-based materials for electrocatalytic hydrogen evolution
Received date: 2020-12-14
Online published: 2021-11-15
电解水作为一种绿色制氢技术备受关注,设计开发适用于全pH(pH=0~14)介质的高效、低廉的电催化剂,可实现减少能耗、简化装置构建和优化生产工艺。二硫化钼具有电子结构的可调性以及除贵金属外最合适的热力学活性,是极具前景的析氢材料之一。通过综述二硫化钼基全pH析氢材料的研究现状,涉及本征二硫化钼物性调节策略以及原子掺杂的表面工程和界面工程调制,阐明了相应的催化增强机制,揭示了制备全pH范围兼具活性和高电流稳定性的催化剂是电催化材料的发展趋势,并提出激活多级结构二硫化钼材料惰性基面、提高材料整体导电性、精准锚定单原子以及包覆多孔碳是设计高效全pH催化剂的根本策略。
巩飞龙 , 刘钰恒 , 刘梦梦 , 王国庆 . 二硫化钼基全pH电催化析氢材料研究进展[J]. 无机盐工业, 2021 , 53(11) : 1 -9 . DOI: 10.19964/j.issn.1006-4990.2020-0674
As a green hydrogen production technology, electrolyzed water splitting has received lots of attention.Design and development of high-efficient and low-cost electrocatalysts,which are suitable for full pH(pH=0-14) media,can reduce ener-gy consumption,simplify device construction and optimize production process.MoS2 has been considered as one of the pro-mising materials for electrochemical hydrogen evolution,due to its tunable electronic structure and the most suitable thermo-dynamic activity except for precious metals.The current research progress of MoS2-based pH-universal catalysts for electro-chemical hydrogen evolution reaction was reviewed,such as modulating physical property of intrinsic MoS2,surface engineer-ing with atom doping,and interface engineering.The corresponding catalytic mechanism was clarified.It was revealed that preparation of catalysts with both hydrogen evolution activity and stability at high current density in all-pH range would be the tendency of electrocatalytic materials.It was also proposed that activation of inert basal plane for multi-level structural MoS2 materials,enhancement of the whole electroconductivity,anchor of single atoms precisely,and encapsulation of active materials with porous carbon would be the fundamental strategies for designing efficient pH-universal catalysts.
[1] | YU J C. Research on China′s new energy development path based on circular economy[J]. Academic Journal of Business & Management, 2020, 2(3):49-53. |
[2] | 赵扬, 彭鸣, 谭勇文. 三维自支撑电极在析氢反应中的研究进展[J]. 中国材料进展, 2018, 37(4):241-253,281. |
[3] | 邱雯曦, 钟辉云, 周礼仕, 等. 基于过渡金属电催化析氢催化剂的研究进展[J]. 工业催化, 2020, 28(9):8-16. |
[4] | DINCER I, ACAR C. Review and evaluation of hydrogen production methods for better sustainability[J]. International Journal of Hydro-gen Energy, 2015, 40(34):11094-11111. |
[5] | 王培灿, 雷青, 刘帅, 等. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展, 2019, 38(1):278-290. |
[6] | 李凯迪, 王思佳, 朱鑫瑞, 等. MoS2/核桃壳活性炭复合纳米材料的制备及其电催化析氢性能研究[J]. 化工新型材料, 2019, 47(4):71-75. |
[7] | 胡颖. 二硫化钼用于电催化析氢反应的研究进展[J]. 新材料产业, 2017(10):43-49. |
[8] | LIU Q, WANG E, SUN G. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2020, 41(4):574-591. |
[9] | ZHAO G, RUI K, DOU S X, et al. Heterostructures for electrochemi-cal hydrogen evolution reaction:A review[J]. Advanced Functional Materials, 2018, 28(43).Doi: 10.1002/adfm.201803291. |
[10] | VESBORG P; BRIAN S; CHORKENDORFF I. Recent development in hydrogen evolution reaction catalysts and their practical imple-mentation[J]. The Journal of Physical Chemistry Letters, 2015, 6(6):951-957. |
[11] | SINHA A, DHANJAI, JAIN R, et al. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials:A review[J]. Microchimica Acta, 2018, 185(2).Doi: 10.1007/s0604-017-2626-0. |
[12] | 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展[J]. 材料导报, 2017(3):7-14. |
[13] | 宋晓琳, 陈贵锋, 关丽秀, 等. MoS2为基纳米复合材料的制备及性能研究进展[J]. 中国材料进展, 2017, 36(12):929-937,949. |
[14] | 吴瑞峰, 王宏伟, 皮晓媛. 二硫化钼复合导电碳作为高性能钠离子电池负极材料的研究[J]. 无机盐工业, 2019, 51(7):28-32. |
[15] | 杜淼, 张馨. 二维纳米材料在水处理中的应用研究进展[J]. 无机盐工业, 2020, 52(1):17-21. |
[16] | 王毅, 李刚, 李朋伟, 等. 层状二硫化钼光催化产氢的研究进展[J]. 半导体光电, 2016, 37(4):461-466. |
[17] | TSAI C, ABILD-PEDERSEN F, NORSKOV J K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactio-ns[J]. Nano Letters, 2014, 14(3):1381-1387. |
[18] | 郭亚肖, 商昌帅, 李敬, 等. 电催化析氢、析氧及氧还原的研究进展[J]. 中国科学:化学, 2018, 48(8):926-940. |
[19] | YIN J, FAN Q, LI Y, et al. Ni-C-N nanosheets as catalyst for hy-drogen evolution reaction[J]. Journal of the American Chemical So-ciety, 2016, 138(44):14546-14549. |
[20] | WANG S, WANG J, ZHU M, et al. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles:A highly efficient,low-cost catalyst for hydrogen evolution reac-tion[J]. Journal of the American Chemical Society, 2015, 137(50):15753-15759. |
[21] | GE X B, CHEN L Y, ZHANG L, et al. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-effi-ciency hydrogen production[J]. Advanced Materials, 2014, 26(19):3100-3104. |
[22] | 孙娇娇, 郭文锋, 唐永福, 等. 纳米花状MoS2的水热法合成及其电催化析氢性能[J]. 中国科技论文, 2017, 12(12):1395-1398. |
[23] | 张浩翔, 胡芳仁, 郭俊宏. 水热法合成纳米二硫化钼及其电催化性析氢性能研究[J], 功能材料, 2019, 50(11):11128-11132. |
[24] | 张洪格, 朱佳, 章永凡. Zn掺杂MoS2的构型、电子结构及电催化析氢性能的理论研究[J]. 江西师范大学学报:自然科学版, 2020, 44(4):417-423. |
[25] | SUN Y, LI C, ZHANG J, et al. First-principles study of the catalytic properties of Co-doped molybdenum disulfide nanoribbons for the hydrogen evolution reaction[J]. Journal of Applied Physics, 2020, 128(4).Doi: 10.1063/5.0007906. |
[26] | 侯世成, 任王瑜, 朱清, 等. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报:工学版, 2019, 53(8):1610-1617. |
[27] | BOLAR S, SHIT S, MURMU N C, et al. FeNiSx@MoS2 heterostruc-ture:A bioinspired nonprecious electrocatalyst for the hydrogen evolution reaction in acidic and basic media[J]. Chemelectrochem, 2020, 7(15):3324-3335. |
[28] | 张宇, 王世兴, 杨蕊, 等. Co9S8/MoS2异质结构的构筑及电催化析氢性能研究[J]. 化学学报, 2020, 78(12):1455-1460. |
[29] | LIN J, WANG P, WANG H, et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitt-ing[J]. Advanced Science, 2019, 6(14).Doi: 10.1002/advs.201900246. |
[30] | LUKOWSKI M A, DANIEL A S, MENG F, et al. Enhanced hydro-gen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28):10274-10277. |
[31] | ZHOU Q, LUO X, LI Y, et al. A feasible and environmentally frien-endly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(1):433-442. |
[32] | XU S, LI D, WU P. One-pot,facile,and versatile synjournal of mono-layer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Advanced Fu-nctional Materials, 2015, 25(7):1127-1136. |
[33] | WU Z, FANG B, WANG Z, et al. MoS2 nanosheets:A designed st-structure with high active site density for the hydrogen evolution Reaction[J]. ACS Catalysis, 2013, 3(9):2101-2107. |
[34] | ZHANG J, WU J, GUO H, et al. Unveiling active sites for the hydro-gen evolution reaction on monolayer MoS2[J]. Advanced Materials, 2017, 29(42).Doi: 10.1002/adma.201701955. |
[35] | LI H, TSAI C, KOH A L, et al. Activating and optimizing MoS2 ba-sal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nature Materials, 2016, 15(1):48-53. |
[36] | CHEN Y, RONG J, TAO Q, et al. Modifying microscopic structures of MoS2 by high pressure and high temperature used in hydrogen evolution reaction[J]. Electrochimica Acta, 2020, 357.Doi: 10.1016/j.electacta.2020.136868. |
[37] | ANJUM M A R, JEONG H Y, LEE M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2018, 30(20).Doi: 10.1002/adma.201707105. |
[38] | ZHANG L F, KE X X, OU G, et al. Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-mill-ing method[J]. Science China Materials, 2017, 60(9):849-856. |
[39] | PU Z, LIU Q, ASIRI A M, et al. 3D macroporous MoS2 thin film:In situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values[J]. Electrochi-mica Acta, 2015, 168:133-138. |
[40] | CHEN I W P, HSIAO C H, HUANG J Y, et al. Highly efficient hy-drogen evolution from seawater by biofunctionalized exfoliated MoS2 quantum dot aerogel electrocatalysts that is superior to Pt[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14159-14165. |
[41] | HUANG X, LENG M, XIAO W, et al. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(6):24-30. |
[42] | WANG J, LIU J, ZHANG B, et al. The mechanism of hydrogen ad-sorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst[J]. Physical Chemistry Chemical Physics, 2017, 19(15):10125-10132. |
[43] | PATTENGALE B, HUANG Y, YAN X, et al. Dynamic evolution and reversibility of single-atom Ni(Ⅱ) active site in 1T-MoS2 electro-catalysts for hydrogen evolution[J]. Nature Communications, 2020, 11(1):4114. |
[44] | LIU P, ZHU J, ZHANG J, et al. Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution[J]. Electrochimica Acta, 2018, 260:24-30. |
[45] | HUANG Y C, SUN Y H, ZHENG X L, et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced elec-trochemical hydrogen evolution[J]. Nature Communications, 2019, 10(1):972-974. |
[46] | MA F, LIANG Y, ZHOU P, et al. One-step synjournal of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in al-kaline solutions[J]. Materials Chemistry and Physics, 2020, 244. Doi: 10.1016/j.matchemphys.2020.122642. |
[47] | BIAN L Z, GAO W, SUN J M, et al. Phosphorus-doped MoS2 nano-sheets supported on carbon cloths as efficient hydrogen-generation electrocatalysts[J]. ChemCatChem, 2018, 10(7):1571-1577. |
[48] | WANG Q, ZHAO Z L, DONG S, et al. Design of active nickel sin-gle-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction[J]. Nano Energy, 2018, 53:458-467. |
[49] | ZHANG W, SUN Y F, LIU Q Y, et al. Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for effi-cient hydrogen evolution[J]. Journal of Alloys and Compounds, 2019, 791:1070-1078. |
[50] | CHEN J, JIA J, WEI Z Q, et al. Ni and N co-doped MoCx as efficient electrocatalysts for hydrogen evolution reaction at all-pH values[J]. International Journal of Hydrogen Energy, 2018, 43(31):14301-14309. |
[51] | SUN K, ZENG L, LIU S, et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution[J]. Nano En-ergy, 2019, 58:862-869. |
[52] | FAN A, ZHENG P, QIN C, et al. Few-layer MoS2 and Pt nanoparti-cles Co-anchored on MWCNTs for efficient hydrogen evolution over a wide pH range[J]. Electrochimica Acta, 2020, 358.Doi: 10.1016/j.electacta.2020.136927. |
[53] | FENG J X, WU J Q, TONG Y X, et al. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption[J]. Journal of the American Chemical Society, 2018, 140(2):610-617. |
[54] | FENG J X, TONG S Y, TONG Y X, et al. Pt-like hydrogen evo-lution electrocatalysis on PANI/CoP hybrid nanowires by weaken-ing the shackles of hydrogen ions on the surfaces of catalysts[J]. Journal of the American Chemical Society, 2018, 140(15):5118-5126. |
[55] | GHUMAN K K, YADAV S, SINGH C V. Adsorption and dissocia-tion of H2O on monolayered MoS2 edges:Energetics and mechani-sm from ab initio simulations[J]. Journal of Physical Chemistry C, 2015, 119(12):6518-6529. |
[56] | GONG M, WANG D Y, CHEN C C, et al. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J]. Nano Research, 2016, 9(1):28-46. |
[57] | GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nic-kel heterostructures for active hydrogen evolution electrocataly-sis[J]. Nature Communications, 2014, 5(1).Doi: 10.1038/ncomms5695. |
[58] | VIKRAMAN D, HUSSAIN S, TRUONG L, et al. Fabrication of MoS2/WSe2 heterostructures as electrocatalyst for enhanced hydro-gen evolution reaction[J]. Applied Surface Science, 2019, 480:611-620. |
[59] | HUANG L, YANG Y, ZHANG C, et al. A nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for the hydrogen evolu-tion reaction[J]. Nanotechnology, 2020, 31(22).Doi: 10.1088/1361-6528/ab767a. |
[60] | ZHANG J, WANG T, LIU P, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy & Environmental Science, 2016, 9(9):2789-2793. |
[61] | PENG O, SHI R, WANG J, et al. Hierarchical heterostructured ni-ckle foam-supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction[J]. Materials Today Energy, 2020, 18.Doi: 10.1016/j.mtener.2020.100513 |
[62] | LIU S, LI B, MOHITE S V, et al. Ultrathin MoS2 nanosheets in situ grown on rich defective Ni0.96S as heterojunction bifunctional el-ectrocatalysts for alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(55):29929-29937. |
[63] | LIANG T T, LIU Y D, CHENG Y Z, et al. Scalable synjournal of a MoS2/Black phosphorus heterostructure for pH-universal hydro-gen evolution catalysis[J]. ChemCatChem, 2020, 12(10):2840-2848. |
[64] | TANG B, YU Z G, ZHANG Y, et al. Metal-organic framework-deri-ved hierarchical MoS2/CoS2 nanotube arrays as pH-universal elec-trocatalysts for efficient hydrogen evolution[J]. Journal of Materi-als Chemistry A, 2019, 7(21):13339-13346. |
/
〈 |
|
〉 |