无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

氧化石墨烯改性聚酰胺膜研究进展

  • 白露 ,
  • 王敏 ,
  • 杨红军 ,
  • 彭正军 ,
  • 赵有璟 ,
  • 李志录
展开
  • 1.中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
    2.青海省盐湖资源化学重点实验室
    3.中国科学院大学
白露(1997— ),女,硕士研究生,研究方向为纳滤膜改性与制备;E-mail: bailu191@mails.ucas.ac.cn

收稿日期: 2020-11-25

  网络出版日期: 2021-10-11

基金资助

国家自然科学基金(U1707601)

Research progress of graphene oxide modified polyamide membrane

  • Lu Bai ,
  • Min Wang ,
  • Hongjun Yang ,
  • Zhengjun Peng ,
  • Youjing Zhao ,
  • Zhilu Li
Expand
  • 1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining 810008,China
    2. Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes
    3. University of Chinese Academy of Sciences

Received date: 2020-11-25

  Online published: 2021-10-11

摘要

聚酰胺膜广泛应用于海水淡化、苦咸水脱盐及废水处理等领域,复杂、多类型的应用场景对膜性能提出了更高要求。氧化石墨烯(GO)以优异的机械、化学稳定性及亲水性等优点引起了学者的广泛关注。利用GO改性聚酰胺膜,可以改善膜的水通量、抗污染及耐氯性等性能。综述了聚酰胺膜在酸性和含氯溶液中的降解过程,介绍了GO结构特征,重点关注了利用GO在聚酰胺膜支撑层中、支撑层与功能层间、功能层中及功能层表面进行改性以提高膜性能的研究进展,对GO改性聚酰胺膜中金属离子及水传质过程进行了简要介绍。最后,提出未来可以从完善GO改性聚酰胺膜抗污机理、提高GO在膜基质中的稳定性、提高GO在溶液中的分散性及增强GO改性聚酰胺膜耐酸性等方面作进一步研究。

本文引用格式

白露 , 王敏 , 杨红军 , 彭正军 , 赵有璟 , 李志录 . 氧化石墨烯改性聚酰胺膜研究进展[J]. 无机盐工业, 2021 , 53(10) : 15 -21 . DOI: 10.19964/j.issn.1006-4990.2020-0640

Abstract

Polyamide membrane is widely used in seawater softening,brackish water desalination,wastewater treatment and other fields.Higher requirement for polyamide membrane has been put forward for various application scenarios.Graphene oxide(GO) has attracted much attention of scholars for its excellent mechanical property,chemical stability and hydrophilici-ty.Polyamide membrane was modified by GO in different layers to improve its water flux,antipollution and chlorine-resistance.The degradation process of polyamide membrane in acidic and chlorine-containing solution was reviewed and GO structure characteristics was introduced.The research progress in polyamide membrane modified by GO in the support layer,between the support and functional layer,in the functional layer and the surface of the functional layer to improve the performance of the membrane were mainly focused.The mass transfer processes of metal ions and water molecules in polyamide membrane modi-fied by GO were briefly introduced.Finally,it was suggested that the further research could be carried out from the aspects of perfecting the anti-fouling mechanism of GO modified polyamide membrane,improving the stability of GO in membrane matrix,increasing the dispersion of GO in solution,enhancing the acid resistance of GO modified polyamide membrane in the future.

参考文献

[1] 杜淼, 张馨. 二维纳米材料在水处理中的应用研究进展[J]. 无机盐工业, 2020, 52(1):17-21.
[2] Wang Y, Zhang Z, Li T, et al. Photothermal-responsive graphene oxide membrane with smart gates for water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44886-44893.
[3] 李燕, 赵有璟, 王敏. 纳滤技术在盐湖卤水镁锂分离领域的研究进展[J]. 无机盐工业, 2017, 49(12):9-12.
[4] 王祯宜. 薄膜复合纳滤膜结构设计及脱盐性能研究[D]. 合肥: 中国科学技术大学, 2020.
[5] 宋蕾, 伍灵, 解强, 等. 无机盐溶液纳滤膜技术的研究进展[J]. 无机盐工业, 2007, 39(4):5-7.
[6] Platt S, Nyström M, Bottino A, et al. Stability of NF membranes un-der extreme acidic conditions[J]. Journal of Membrane Science, 2004, 239(1):91-103.
[7] 张瑛洁, 戴继悟. 氧化石墨烯改性复合纳滤膜的研究进展[J]. 水处理技术, 2017, 43(9):1-5.
[8] 杨碧野, 姚之侃, 林赛赛, 等. 聚酰胺薄层复合膜性能劣化机理及表面改性策略[J]. 膜科学与技术, 2020, 40(3):161-167.
[9] Xue S M, Ji C, Xu Z, et al. Chlorine resistant TFN nanofiltration mem-brane incorporated with octadecylamine-grafted GO and fluorine-containing monomer[J]. Journal of Membrane Science, 2018, 545:185-195.
[10] Jun B M, Kim S W, Kwak S K, et al. Effect of acidic aqueous solu-tion on chemical and physical properties of polyamide NF mem-branes[J]. Applied Surface Science, 2018, 444:387-398.
[11] Do V T, Tang C, Reinhaed M, et al. Degradation of polyamide nano-filtration and reverse osmosis membranes by hypochlorite[J]. En-vironmental Science & Technology, 2012, 46(2):852-859.
[12] Navarro R, Gonzaleza M P, Saucedo I, et al. Effect of an acidic trea-tment on the chemical and charge properties of a nanofiltration mem-brane[J]. Journal of Membrane Science, 2008, 307(1):136-148.
[13] Ma Q, Shuler P J, Aften C W, et al. Theoretical studies of hydroly-sis and stability of polyacrylamide polymers[J]. Polymer Degrada-tion Stability, 2015, 121:69-77.
[14] Xu J, Wang Z, Wei X, et al. The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane:New insights from the study of self-made membrane[J]. Desalination, 2013, 313:145-155.
[15] Hashiba K, Nakai S, Ohno M, et al. Deterioration mechanism of a tertiary polyamide reverse osmosis membrane by hypochlorite[J]. Environmental Science & Technology, 2019, 53(15):9109-9117.
[16] Liu S, Wu C, Hou X, et al. Understanding the chlorination mecha-nism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. Journal of Membrane Science, 2019, 573:36-45.
[17] Moghadam F, Park H B. 2D nanoporous materials:Membrane plat-form for gas and liquid separations[J]. 2D Materials, 2019, 6(4).Doi: 10.1088/2053-1583/ab1519.
[18] 王朋辉, 李怡恩, 张亚涛. 氧化石墨烯尺寸调控及其复合膜分离性能研究[J]. 膜科学与技术, 2019, 39(3):62-69.
[19] Zhang N, Qi W, Huang L, et al. Review on structural control and modification of graphene oxide-based membranes in water treat-ment:From separation performance to robust operation[J]. Chi-nese Journal of Chemical Engineering, 2019, 27(6):1348-1360.
[20] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graph-ene oxide[J]. Chemical Society Reviews, 2010, 39(1):228-240.
[21] 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10):4061-4072.
[22] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
[23] Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15):5288-5301.
[24] Xie Q, Shao W, Zhang S, et al. Enhancing the performance of thin-film nanocomposite nanofiltration membranes using MAH-modi-fied GO nanosheets[J]. RSC Advances, 2017, 7(86):54898-54910.
[25] Paul M, Jons S D. Chemistry and fabrication of polymeric nanofil-tration membranes:A review[J]. Polymer, 2016, 103:417-456.
[26] Goh P S, Ismail F A. Chemically functionalized polyamide thin film composite membranes:The art of chemistry[J]. Desalination, 2020, 495.Doi: 10.1016/j.desal.2020.114655.
[27] Xie Q, Zhang S, Hong Z, et al. A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes:Incorporating functionalized graphenes into support-ing and selective layers[J]. Chemical Engineering Journal, 2019, 368:186-201.
[28] Lai G S, Lau W J, Goh P S, et al. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt re-moval performance[J]. Desalination, 2016, 387:14-24.
[29] Bala S, Nithya D, Doraisamy M. Exploring the effects of graphene oxide concentration on properties and antifouling performance ofPEES/GO ultrafiltration membranes[J]. High Performance Poly-mer, 2017, 30(3):375-383.
[30] Ravishankar H, Christy J, Jegatheesan V. Graphene oxide (GO)-blended polysulfone(PSf) ultrafiltration membranes for lead ionrejection[J]. Membranes(Basel), 2018, 8(3).Doi: 10.3390/membranes8030077.
[31] Koo C H, Lau W J, Lai G S, et al. Thin-film nanocomposite nanofiltra-tion membranes incorporated with graphene oxide for phosphorus removal[J]. Chemical Engineering & Technology, 2018, 41(2):319-326.
[32] Xu P, Hong J, Qian X, et al. “Bridge” graphene oxide modified po-sitive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination, 2020, 488.Doi: 10.1016/j.desal.2020.114522.
[33] Lai G S, Lau W J, Goh P S, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation[J]. Chemmical Engineering Journal, 2018, 344:524-534.
[34] Li Y, Li C, Li S, et al. Graphene oxide(GO)-interlayered thin-film nanocomposite(TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN)[J]. Journal of Materials Chemistry A, 2019, 7:13315-13330.
[35] Zhao X Y, Tong Z, Liu X, et al. Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions[J]. Industri-al & Engineering Chemistry Research, 2020, 59(26):12232-12238.
[36] Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified po-lyamide nanofiltration membrane with improved flux and antifoul-ing properties[J]. Journal of Materials Chemistry A, 2015, 3(5).Doi: 10.1039/C4TA03607G.
[37] Chae H R, Lee J, Lee C H, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux,anti-biofouling,and chlorine resistance[J]. Journal of Membrane Scien-ce, 2015, 483:128-135.
[38] Wang J, Zhao C, Wang T, et al. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J]. RSC Advances, 2016, 6(85):82174-82185.
[39] Nan Q, Li P, Cao B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Applied Surface Science, 2016, 387:521-528.
[40] Hu R, He Y, Zhang C, et al. Graphene oxide-embedded polyamide nanofiltration membranes for selective ion separation[J]. Journal of Materials Chemistry A, 2017, 5(48):25632-25640.
[41] Perreault F, De F A F, Nejati S, et al. Antimicrobial properties of graphene oxide nanosheets:Why size matters[J]. ACS Nano, 2015, 9(7):7226-7236.
[42] Serpe G, Chaupart N, Verdu J. Ageing of polyamide 11 in acid so-lutions[J]. Polymer, 1997, 38:1911-1917.
[43] Choi W, Choi J, Bang J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23):12510-12519.
[44] Perreault F, Tousley M E, Elimelech M. Thin-film composite poly-amide membranes functionalized with biocidal graphene oxide na-nosheets[J]. Environmental Science & Technology Letters, 2014, 1(1):71-76.
[45] Shao F, Dong L, Dong H, et al. Graphene oxide modified polyamid mide reverse osmosis membranes with enhanced chlorine resis-tance[J]. Journal of Membrane Science, 2017, 525:9-17.
[46] Luo J, Wan Y. Effects of pH and salt on nanofiltration-A critical review[J]. Journal of Membrane Science, 2013, 438:18-28.
[47] Sun P, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide mem-branes based on cation π interactions[J]. ACS Nano, 2014, 8(1):850-859.
[48] Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide mem-branes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676):415-418.
[49] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444.
文章导航

/