无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

燃煤电厂干化灰渣中氯的脱除研究

  • 秦刚华 ,
  • 陈彪 ,
  • 冯向东 ,
  • 陈慧 ,
  • 孙青 ,
  • 张俭 ,
  • 盛嘉伟
展开
  • 1.浙江浙能技术研究院有限公司,浙江杭州 311121
    2.浙江省火力发电高效节能与污染物控制技术研究重点实验室
    3.浙江工业大学材料科学与工程学院
秦刚华(1963— ),男,教授级高工,主要从事能源行业技术研发与管理;E-mail: qingh@zjentc.com

收稿日期: 2020-11-09

  网络出版日期: 2021-10-11

Research on dechlorination from dry ash of coal-fired power plants

  • Ganghua Qin ,
  • Biao Chen ,
  • Xiangdong Feng ,
  • Hui Chen ,
  • Qing Sun ,
  • Jian Zhang ,
  • Jiawei Sheng
Expand
  • 1. Zhejiang Energy R&D Institute,Hangzhou 311121,China
    2. Zhejiang Provincial Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power
    3. School of Materials Science and Engineering,Zhejiang University of Technology

Received date: 2020-11-09

  Online published: 2021-10-11

摘要

干化灰渣是燃煤电厂脱硫废水零排放的固态废弃物,但由于氯含量高限制其资源化利用。再加之脱硫废水零排放技术渐成主流,研究干化灰渣高效脱氯的方法具有重要的现实意义。通过XRF和XRD对干化灰渣进行元素成分和物相表征,通过IR分析灰渣的结构特性,采用添加脱氯剂三氧化二铝(质量分数为2.5%~10.0%)并结合高温煅烧(600~900 ℃)研究了干化灰渣中氯去除过程。得到的优化工艺参数为:煅烧温度为700 ℃、煅烧时间为2 h、三氧化二铝添加量为7.5%,优化工艺下脱氯率可达96.9%。并对脱氯剂三氧化二铝的作用机理作了初步分析。

本文引用格式

秦刚华 , 陈彪 , 冯向东 , 陈慧 , 孙青 , 张俭 , 盛嘉伟 . 燃煤电厂干化灰渣中氯的脱除研究[J]. 无机盐工业, 2021 , 53(10) : 104 -107 . DOI: 10.19964/j.issn.1006-4990.2020-0602

Abstract

Dry ash is a solid waste with zero discharge of desulphurization wastewater from coal-fired power plants,but its re-source utilization is limited because of high content of chlorine.In addition,the zero-discharge technology of desulphurization wastewater has gradually become the mainstream.It is of great practical significance to study the efficient dechlorination method for dry ash.The element composition,crystal phase and structure of dry ash were characterized by XRF,XRD and IR.The process of chlorine removal in dry ash was studied by adding dechlorination agent Al2O3(mass fraction of 2.5%~10.0%)and combining with calcination method(600~900 ℃).The optimized process parameters were as follows:calcination tempera-ture of 700 ℃,calcination time of 2 h,and Al2O3 addition amount of 7.5%.Under the optimized process,the dechlorination rate could reach 96.9%.And the preliminary mechanism of dechlorination agent Al2O3 was analyzed.

参考文献

[1] 牛耀岚, 胡伟, 朱辉, 等. 燃煤电厂脱硫废水处理方法及零排放技术进展[J]. 长江大学学报:自然科学版, 2019, 16(10):72-78.
[2] 张山山, 王仁雷, 晋银佳, 等. 燃煤电厂脱硫废水零排放处理技术研究应用及进展[J]. 华电技术, 2019, 41(12):25-30.
[3] 马双忱, 于伟静, 贾绍广, 等. 燃煤电厂脱硫废水处理技术研究与应用进展[J]. 化工进展, 2016, 35(1):255-262.
[4] 笪春年, 汪海, 徐波, 等. 燃煤电厂煤中氯的迁移和释放特征[J]. 环境化学, 2020, 39(10):2833-2839.
[5] Bie R, Chen P, Song X F, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J]. Journal of The Energy Institute, 2016, 89(4):704-712.
[6] Zhu F F, Takaoka M, Shiota K, et al. Chloride chemical form in vari-ous types of fly ash[J]. Environmental Science & Technology, 2008, 42(11):3932-3937.
[7] Pan J R, Huang C, Kuo J J, et al. Recycling MSWI bottom and fly ash as raw materials for Portland cement[J]. Waste Management, 2008, 28(7):1113-1118.
[8] Aljerf L. Effect of thermal-cured hydraulic cement admixtures on the mechanical properties of concrete[J]. Interceram-International Ceramic Review, 2015, 64(8):346-356.
[9] 朱芬芬, 高冈昌辉, 大下和徹, 等. 焚烧飞灰预处理工艺及其无机氯盐的行为研究[J]. 环境科学, 2013, 34(6):2473-2478.
[10] Yang S, Saffarzadeh A, Shimaoka T, et al. Existence of Cl in muni-cipal solid waste incineration bottom ash and dechlorination effect of thermal treatment[J]. Journal of Hazardous Materials, 2014, 267:214-220.
[11] Zhu F F, Takaoka M, Oshita K, et al. The calcination process in a system for washing,calcinating,and converting treated municipal solid waste incinerator fly ash into raw material for the cement in-dustry[J]. Journal of the Air & Waste Management Association, 2011, 61(7):740-746.
[12] 刘韶华. X射线荧光光谱法在煤灰化学成分测定中的应用[J]. 产业与科技论坛, 2015(18):47-48.
[13] 刘云霞, 曾凡桂, 孙蓓蕾, 等. 古交飞灰不同粒径颗粒的XRD及FTIR研究[J]. 光谱学与光谱分析, 2020, 40(5):1452-1456.
[14] 修连存, 郑志忠, 俞正奎, 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(11):1584-1590.
[15] 才凤, 贾宏新. 离子色谱法测定工业废水中甲酸根、乙酸根和氯离子[J]. 食品安全质量检测学报, 2020, 11(1):219-222.
[16] 周少玲, 张永. 各种氯离子含量测定方法的适用性探讨及新方法的提出[J]. 热力发电, 2008(7):75-77.
[17] 王生智, 白亚亚. 工业水氯离子含量测定方法的优化[J]. 石油化工应用, 2012, 31(3):82-83,91.
[18] 郝志宁. 水中氯离子的测定方法及其研究进展[J]. 环境科学与管理, 2016, 41(5):162-164.
[19] 刘春香, 谢秋利, 张真真, 等. 原盐中氯离子测定方法的优化[J]. 纯碱工业, 2019(5):22-25.
[20] 侯玉亭, 马旭, 曹升玲, 等. 南屯煤矿灌浆用粉煤灰的红外光谱特性研究[J]. 煤矿现代化, 2019(1):96-99.
[21] 陈剑虹, 朱凌建, 华灯鑫. 氯化钠近红外光谱检测技术研究[J]. 光谱学与光谱分析, 2012, 32(4):949-952.
[22] 张彬, 陈剑虹, 焦明星. 氯盐溶液近红外光谱分析研究[J]. 光谱学与光谱分析, 2015, 35(7):1840-1843.
[23] Zhao K X, Hu Y Y, Tian Y Y, et al. Chlorine removal from MSWI fly ash by thermal treatment:Effects of iron/aluminum additives[J]. Journal of Environmental Sciences, 2020, 88:112-121.
[24] Cha S C, Spiegel M. Local reactions between NaCl and KCl parti-cles and metal surfaces[J]. Corrosion Engineering,Science and Technology, 2005, 40(3):249-254.
[25] Cha S C, Spiegel M. Local reactions of KCl particles with iron,ni-ckel and chromium surfaces[J]. Materials and Corrosion, 2006, 57(2):159-164.
[26] Chen W S, Chang F C, Shen Y H, et al. Removal of chloride from MSWI fly ash[J]. Journal of Hazardous Materials, 2012,237- 238:116-120.
文章导航

/