无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

医药废硫酸钠盐燃烧特性及低温炭化除杂研究

  • 杨文振 ,
  • 熊萍 ,
  • 孙秀云 ,
  • 韩卫清
展开
  • 1.南京理工大学环境与生物工程学院,江苏南京 210014
    2.化工污染控制与资源化江苏省高校重点实验室
杨文振(1996— ),男,硕士研究生。研究方向为固体废弃物处置与资源化;E-mail: 1915237194@qq.com

收稿日期: 2020-12-07

  网络出版日期: 2021-09-08

基金资助

江苏省环境保护厅环保科研计划:医药中间体产生废盐的综合利用和安全填埋关键技术与管理政策研究及工程示范(2017004)

Study on combustion characteristics of waste pharmaceutical Na2SO4 and impurity removal by low-temperature carbonization

  • Wenzhen Yang ,
  • Ping Xiong ,
  • Xiuyun Sun ,
  • Weiqing Han
Expand
  • 1. School of Environmental and Biological Engineering,Nanjing University of Science and Technology,Nanjing 210014,China
    2. Key Laboratory of Chemical Pollution Control and Resource Utilization of Universities of Jiangsu Province

Received date: 2020-12-07

  Online published: 2021-09-08

摘要

使用低温炭化-高温活化两步工艺处理典型的医药废盐,成功回收了无机盐和活性炭材料。低温炭化阶段将废盐中的有机物转变为不溶性残余炭渣,通过简单的溶解、过滤即可实现无机盐与有机物的分离;残余炭渣作为炭前体经过活化可得到活性炭材料。使用原子荧光光谱法、气相色谱-质谱联用法对废盐成分进行分析,采用Friedman法和Starink法计算废盐焚烧的活化能,通过管式炉模拟试验对废盐低温炭化条件进行优化,最后采用氢氧化钾浸渍法活化残余炭渣以制备活性炭。结果表明,废盐中溶解性有机碳在空气气氛、350 ℃、60 min条件下去除率达到99.98%,得到的无机盐产品符合GB/T 6009—2014《工业无水硫酸钠》Ⅲ类要求。残余炭渣经活化所得活性炭对亚甲基蓝的吸附容量达到762.86 mg/g。

本文引用格式

杨文振 , 熊萍 , 孙秀云 , 韩卫清 . 医药废硫酸钠盐燃烧特性及低温炭化除杂研究[J]. 无机盐工业, 2021 , 53(9) : 76 -82 . DOI: 10.19964/j.issn.1006-4990.2020-0604

Abstract

A two-step process of low temperature carbonization and high temperature activation was used to treat typical medical waste salt,and inorganic salt and activated carbon materials were recovered successfully.The organic matter in the waste salt was converted into insoluble residual carbon slag in low temperature carbonization section,which could be separated from inorganic salts by simple dissolution and filtration.Activated carbon material could be obtained by activating residual carbon residue as carbon precursor.The components of waste salt were analyzed by atomic fluorescence spectrometry and gas chroma-tography mass spectrometry.The activation energy of waste salt incineration was calculated by Friedman method and Starink method.The carbonization conditions of waste salt at low temperature were optimized by pipe furnace simulation test.The carbon residues were KOH impregnation method to prepare activated carbon.The results showed that the removal rate of dissolved organic carbon in the waste salt reached 99.98% under the conditions of air atmosphere,350 ℃ and 60 min,and the obtained inorganic salt products met the requirements of GB/T 6009—2014“Industrial anhydrate Sodium Sulfate” class Ⅲ.The adsorption capacity of activated carbon for methylene blue reached 762.86 mg/g.

参考文献

[1] 周海云, 鲍业闯, 包健, 等. 工业废盐处理处置现状研究进展[J]. 环境科技, 2020, 33(2):70-75.
[2] 丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2):58-61.
[3] 姜海超, 申银山, 陈晓飞, 等. 含氰工业废盐中杂质的高温氧化脱除实验研究[J]. 无机盐工业, 2020, 52(2):62-64.
[4] 王利超, 王志良, 马堂文, 等. 模拟氯化钠盐渣的高温处理[J]. 化工环保, 2014, 34(5):419-422.
[5] Cao M, Liu L, Yu Z, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600 ℃[J]. Corrosion Science, 2018, 133:165-177.
[6] 李强, 戴世金, 郑怡琳, 等. 工业废盐中有机物脱除和资源化技术进展[J]. 环境工程, 2019, 37(12):200-206.
[7] 李春雨, 蒋旭光, 安春国, 等. 农药生产废渣燃烧/热解特性研究[J]. 中国电机工程学报, 2009, 29(23):45-50.
[8] 董俊佳, 刘志英, 王雷, 等. 医药类废盐渣的燃烧/热解特性及动力学研究[J]. 环境污染与防治, 2019, 41(9):1070-1075.
[9] 廖辉伟, 姜珊, 贾金, 等. 农药含钾废渣的热解动力学[J]. 环境化学, 2012, 31(4):478-482.
[10] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Co-mmittee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2):1-19.
[11] Wang X, Ren Q, Li L, et al. TG-MS analysis of nitrogen transformation during combustion of biomass with municipal sewage sludge[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(3):2061-2068.
[12] 苏梦, 祝建中, 朱晓强, 等. 二氰蒽醌农药废盐热处理特性[J]. 科学技术与工程, 2019, 19(24):423-429.
[13] Yousaf B, Liu G, Abbas Q, et al. Systematic investigation on com-bustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass- and biochar-coal co-combustion systems[J]. Applied Energy, 2017, 208:142-157.
[14] Huang L, Xie C, Liu J, et al. Influence of catalysts on co-combus-tion of sewage sludge and water hyacinth blends as determined by TG-MS analysis[J]. Bioresource Technology, 2018, 247:217-225.
[15] Huang J, Liu J, Chen J, et al. Combustion behaviors of spent mush-room substrate using TG-MS and TG-FTIR:Thermal conversion,kinetic,thermodynamic and emission analyses[J]. Bioresource Technology, 2018, 266:389-397.
[16] 李唯实, 黄泽春, 雷国元, 等. 典型农药废盐热处理过程动力学特征[J]. 中国环境科学, 2018, 38(7):2691-2698.
[17] 张进, 何鑫, 姚思童, 等. 漫反射傅里叶变换红外光谱法定量分析食盐中的硫酸根[J]. 中国调味品, 2015, 40(12):127-131.
[18] 黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, 36(1):10-23.
[19] 范庆玲, 郭小甫, 袁俊生. 垃圾焚烧飞灰水洗液纯化及无机盐分离[J]. 无机盐工业, 2019, 51(3):67-71.
[20] Otowa T, Nojima Y, Miyazaji T. Development of KOH activated high surface area carbon and its application to drinking water purification[J]. Carbon, 1997, 35(9):1315-1319.
[21] 李建生, 高长青, 王雪, 等. 高性能活性炭开发生产中的无机活化剂[J]. 无机盐工业, 2019, 51(8):1-6.
[22] Wang J, Lei S, Liang L. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline[J]. Applied Surface Science, 2020, 530.DOI: 10.1016/j.apsusc.2020.147187.
文章导航

/