氧化硅气凝胶绝热材料及其建筑减碳应用
收稿日期: 2021-01-19
网络出版日期: 2021-09-08
基金资助
国家自然科学基金项目(51678167)
Silica aerogel insulation materials and their application for building carbon reduction
Received date: 2021-01-19
Online published: 2021-09-08
无机氧化硅气凝胶因具有超低导热系数、A级不燃、吸湿率低、轻质等特点,在航天航空、工业及建筑领域的节能减碳方面具有广泛的应用潜力。然而氧化硅气凝胶力学性能差、制备成本高等缺点限制了其发展应用。介绍了氧化硅气凝胶绝热材料制备工艺的研究进展,对氧化硅气凝胶在建筑领域的应用形式(如超轻气凝胶泡沫混凝土、超高性能气凝胶保温隔热板、超低传热系数气凝胶节能玻璃等)进行了综述,并对氧化硅气凝胶在建筑节能领域的发展方向进行了展望。响应碳中和发展目标,随着气凝胶制备技术的发展与成本降低,氧化硅气凝胶绝热材料将在建筑墙体保温隔热方面广泛应用,同时对其性能提出了更多功能性要求,对氧化硅气凝胶材料还需开展更系统的基础研究以及工程应用技术研发,推动建筑领域的节能减碳与可持续发展。
张广鹏 , 吴会军 , 刘彦辰 , 杨丽修 . 氧化硅气凝胶绝热材料及其建筑减碳应用[J]. 无机盐工业, 2021 , 53(9) : 1 -5 . DOI: 10.19964/j.issn.1006-4990.2021-0043
Inorganic silica aerogels have broad application potential in energy saving and carbon reduction in aerospace,aviation,industrial and construction fields due to their ultra-low thermal conductivity,nonflammability of class A,low mo-isture absorption rate and light weight.However,poor mechanical property and high preparation cost limit the development and application of silica aerogels.The research progress of preparation technology of silica aerogel insulation materials was introduced.The application forms of silica aerogels in building field(such as super light aerogel foam concrete,super high performance aerogel insulation board,ultra-low heat transfer coefficient aerogel energy-saving glass) were reviewed,and the development trend of silica aerogels in building energy conservation was prospected.In response to the goal of carbon neutral development,with the development and cost reduction of aerogel preparation technology,silica aerogel insulation materials would be widely applied in building insulation,and at the same time,more functional requirements were put forward for their performance.Therefore,more systematic basic research and engineering application technology research are needed for silica aerogel materials to promote energy conservation,carbon reduction and sustainable development in the field of construction.
[1] | Schiavoni S, D′Alessandro F, Bianchi F, et al. Insulation materials for the building sector:A review and comparative analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 62:988-1011. |
[2] | Jelle B P. Traditional,state-of-the-art and future thermal building insulation materials and solutions-properties,requirements and possibilities[J]. Energy and Buildings, 2011, 43(10):2549-2563. |
[3] | Yin X Q, Li H Q, Bo H T, et al. Weatherability studies on external insulation thermal system of expanded polystyrene board,polystyrene granule and polyurethane foam[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2010, 25(6):1027-1032. |
[4] | Lin J, Xiao H H, An W G, et al. Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls[J]. Energy and Buildings, 2014, 82:243-249. |
[5] | Cuce E, Cuce P M, Wood C J, et al. Toward aerogel based thermal superinsulation in buildings:A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34(3):273-299. |
[6] | Aditya L, Mahlia T M I, Rismanchi B, et al. A review on insulation materials for energy conservation in buildings[J]. Renewable and Sustainable Energy Reviews, 2017, 73:1352-1365. |
[7] | 张红林, 王翠翠, 杨辉, 等. 非金属矿物材料在无机保温材料中的应用及进展[J]. 中国非金属矿工业导刊, 2019(4):7-9,19. |
[8] | 塔桂欣. 非金属矿物材料在无机保温材料中的应用[J]. 建筑技术开发, 2020, 47(18):146-147. |
[9] | Sachithanadam M, Joshi S C. Silica aerogel composites[M]. Singa-pore:Springer Singapore, 2016. |
[10] | Maleki H. Recent advances in aerogels for environmental remedia-tion applications:A review[J]. Chemical Engineering Journal, 2016, 300:98-118. |
[11] | Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation:An overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3):315-339. |
[12] | Papadopoulos A M. State of the art in thermal insulation materials and aims for future developments[J]. Energy and Buildings, 2005, 37(1):77-86. |
[13] | Maleki H, Duraes L, Portugal A. A new trend for development of mechanically robust hybrid silica aerogels[J]. Materials Letters, 2016, 179:206-209. |
[14] | Aegerter M A, Leventis N, Koebel M M. Aerogels handbook[M]. New York:Springer New York, 2011. |
[15] | 吕亚军, 靳卫准, 吴会军, 等. SiO2气凝胶在建筑中的应用探究[J]. 工业建筑, 2018, 48(4):99-105. |
[16] | He Y L, Xie T. Advances of thermal conductivity models of nano-scale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81:28-50. |
[17] | Li Z, Gong L L, Cheng X D, et al. Flexible silica aerogel composit-es strengthened with aramid fibers and their thermal behavior[J]. Materials and Design, 2016, 99:349-355. |
[18] | 魏鹏湾, 闫共芹, 赵冠林, 等. 二氧化硅气凝胶复合隔热材料研究进展[J]. 无机盐工业, 2016, 48(10):1-6. |
[19] | 高睿, 周张健, 张宏博, 等. 二氧化硅气凝胶高温稳定性研究[J]. 无机盐工业, 2019, 51(9):50-53. |
[20] | Lu Z, Yuan Z, Liu Q, et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering A, 2015, 625:278-287. |
[21] | 吴会军, 廖云丹, 丁云飞. 定向纤维气凝胶隔热复合材料及其制备方法:中国,102503356A[P]. 2012-06-20. |
[22] | Berardi D U, Sprengard C. An overview of and introduction to current researches on super insulating materials for high-performance buildings[J]. Energy and Buildings, 2020, 214.Doi: 10.1016/j.en-build.2020.109890. |
[23] | Yang J M, Wu H J, Huang G S, et al. Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aero-gel composites for super-thermal insulation[J]. Materials & Design, 2017, 133:224-236. |
[24] | Muralitharan R S, Ramasamy V. Development of lightweight con-crete for structural applications[J]. Journal of Structural Engineering, 2017, 44(4):1-5. |
[25] | Mikulica K, Labaj M. Foam concrete gravity wedges as a thermal insulation of flat roofs[J]. Key Engineering Materials, 2016, 722:331-336. |
[26] | Zhang B, Poon C S. Use of furnace bottom ash for producing light-weight aggregate concrete with thermal insulation properties[J]. Journal of Cleaner Production, 2015, 99(15):94-100. |
[27] | Hu C, Li H, Liu Z W, et al. Research on properties of foamed concrete reinforced with small sized glazed hollow beads[J]. Advances in Materials Science and Engineering, 2016, 2016:1-8. |
[28] | Zhang Z H, Provis J L, Reid A, et al. Mechanical,thermal insulation,thermal resistance and acoustic absorption properties of geopolymer foam concrete[J]. Cement & Concrete Composites, 2015, 62:97-105. |
[29] | Zhang H Y, Yang J M, Wu H J, et al. Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency[J]. Solar Energy, 2020, 204:569-576. |
[30] | Liu S J, Zhu K M, Cui S, et al. A novel building material with low thermal conductivity:Rapid synjournal of foam concrete reinforced silica aerogel and energy performance simulation[J]. Energy and Buildings, 2018, 177:385-393. |
[31] | Li P W, Wu H J, Liu Y C, et al. Preparation and optimization of ul-tra-light and thermal insulative aerogel foam concrete[J]. Construction and Building Materials, 2019, 205:529-542. |
[32] | Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blan-kets:From mathematical modeling to material characterization and experimental analysis[J]. Internatioal Journal of Heat and Mass Transfer, 2016, 93(2):1124-1131. |
[33] | 梁玉莹, 吴会军, 黄仁达, 等. SiO2气凝胶复合材料的隔热和力学性能优化[J]. 硅酸盐通报, 2017, 36(5):1693-1699. |
[34] | Yang J M, Wu H J, Xu X H, et al. Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency[J]. Renewable Energy, 2019, 138:445-457. |
[35] | Ibrahim M, Nocentini K, Stipetic M, et al. Multi-field and multi-sc-ale characterization of novel super insulating panels/systems based on silica aerogels:Thermal,hydric,mechanical,acoustic,and fire performance[J]. Building and Environment, 2019, 151:30-42. |
[36] | Merli F, Anderson A M, Carroll M K, et al. Acoustic measurements on monolithic aerogel samples and application of the selected solutions to standard window systems[J]. Applied Acoustics, 2018, 142:123-131. |
[37] | Valachova D, Zdrazilova N, Panovec V, et al. Using of aerogel to improve thermal insulating properties of windows[J]. Civil and Environmental Engineering, 2018, 14(1):2-11. |
[38] | Thakoor S. Aerogel glazing-an emerging energy efficient technology for windows[J]. International Journal of Engineering Research, 2018, 7(special 2):147-148. |
[39] | Garnier C, Muneer T, McCauley L. Super insulated aerogel windows:Impact on daylighting and thermal performance[J]. Building and Environment, 2015, 94(part 1):231-238. |
[40] | Buratti C, Moretti E, Zinzi M, et al. High energy-efficient windows with silica aerogel for building refurbishment:Experimental characterization and preliminary simulations in different climate conditions[J]. Buildings, 2017, 7(1).Doi: 10.3390/buildings7010008. |
[41] | 吕亚军, 吴会军, 王珊, 等. 气凝胶建筑玻璃透光隔热性能及影响因素[J]. 土木建筑与环境工程, 2018, 40(1):134-140. |
[42] | Lolli N, Andresen I. Aerogel vs.argon insulation in windows:A greenhouse gas emissions analysis[J]. Building and Environment, 2016, 101:64-76. |
/
〈 |
|
〉 |