无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

盐酸法磷酸萃取相的洗涤和磷酸反萃取过程初探

  • 张少杰 ,
  • 唐盛伟 ,
  • 王杨 ,
  • 郑东钥 ,
  • 钟本和 ,
  • 陈彦逍
展开
  • 四川大学化学工程学院,四川成都 610065
张少杰(1994- ), 男,硕士研究生,在研方向为湿法磷酸净化; E-mail: sjzhang@stu.scu.edu.cn

收稿日期: 2020-10-12

  网络出版日期: 2021-08-11

基金资助

国家重点研发计划项目“固废资源化”(2018YFC1900202)

Preliminary study on scrubbing and stripping operation of the extracted organic phase in wet phosphoric acid process by hydrochloric acid route

  • Shaojie Zhang ,
  • Shengwei Tang ,
  • Yang Wang ,
  • Dongyue Zheng ,
  • Benhe Zhong ,
  • Yanxiao Chen
Expand
  • School of Chemical Engineering,Sichuan University,Chengdu 610065,China

Received date: 2020-10-12

  Online published: 2021-08-11

摘要

研究了从以磷酸三丁酯(TBP)为主的萃取相中反萃取磷酸的过程,考察了一步法流程(以硫酸溶液通过沉淀反应去除磷酸萃取有机相中氯化钙的同时反萃取磷酸)以及二步法流程(先以硫酸沉淀反应去除氯化钙,后用去离子水反萃取磷酸)所得的反萃磷酸的净化效果。结果表明,采用一步法时,反萃取磷酸的品质受到硫酸钙溶解平衡的影响,钙含量较高;而采用二步法时,反萃磷酸中氯化钙的质量分数可降低至0.002 7%以下,n(磷酸)/n(钙离子)提升了65倍以上,但有机相中磷酸的洗损为20%左右;利用聚焦光反射测量技术(FBRM)对洗涤过程中硫酸钙在有机相中的结晶过程进行了在线监测,通过扫描电镜(SEM)和X射线衍射(XRD)等手段对副产硫酸钙的晶体形貌和物相组成进行了分析,结果表明实验条件下洗涤10 min时,体系中的Ca2+生成半水石膏(CaSO4·0.5H2O)。计算表明,该盐酸法磷酸工艺洗涤过程中副产石膏值(以二水硫酸钙计)仅为二水硫酸法的8.7%,显著降低了湿法磷酸过程中的石膏处理量。

本文引用格式

张少杰 , 唐盛伟 , 王杨 , 郑东钥 , 钟本和 , 陈彦逍 . 盐酸法磷酸萃取相的洗涤和磷酸反萃取过程初探[J]. 无机盐工业, 2021 , 53(8) : 36 -43 . DOI: 10.19964/j.issn.1006-4990.2020-0545

Abstract

The process of back extraction of phosphoric acid from tributyl phosphate(TBP) was studied.The quality of the different stripped phosphoric acid obtained by the one-step process(simultaneously precipitating CaCl2 and stripping H3PO4 with H2SO4 solution) and by the two-step process(firstly precipitating and removing CaCl2 with H2SO4,then stripping H3PO4 with deionized water) was investigated.The results showed that in the one-step process the purity of the stripped phosphoric acid was affected by the dissolution balance of calcium sulfate with high content of calcium,while in the two-step process,the contents of CaCl2 in the stripped reduced to below 0.002 7%,and the value of n(H3PO4)/n(Ca2+) increased by more than 65 times,but the H3PO4 loss in organic phase caused by scrubbing process was about 20%.The focused beam reflectance measurement(FBRM) technology was used to monitor the crystallization of calcium sulfate on line in the organic phase during the scrubbing process.The morphology and phase composition of the calcium sulfate were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods.The results showed that after scrubbing for 10 min under the experimental conditions,Ca2+ in the system basically generated hemihydrate gypsum(CaSO4·0.5H2O).Theoretical calcula-tion indicated that the production of the by-product gypsum(calculated as CaSO4·2H2O) in scrubbing step of the wet phosp-horic acid process by hydrochloric acid route was only equivalent to 8.7% of that by sulfuric acid route,significantly reduces the amount of gypsum treated in the wet process phosphoric acid process.

参考文献

[1] 马航, 冯霄. 基于湿、热法磷加工体系共生耦合的磷资源产业可持续性发展研究[J]. 无机盐工业, 2018, 50(11):1-6.
[2] Assuncao M C, Cote G, Andre M, et al. Phosphoric acid recovery from concentrated aqueous feeds by a mixture of di-isopropyl ether(DiPE) and tri-n-butylphosphate(TBP):Extraction data and mo-delling[J]. RSC Advances, 2017, 7(12):6922-6930.
[3] 钟本和, 陈亮, 李军, 等. 溶剂萃取法净化湿法磷酸的新进展[J]. 化工进展, 2005, 24(6):596-602.
[4] 雷武. 探讨湿法磷酸生产中节约硫酸的途径[J]. 磷肥与复肥, 2001, 16(4):29-31.
[5] Zhang P. Comprehensive recovery and sustainable development of phosphate resources[J]. Procedia Engineering, 2014(83):37-51.
[6] 徐进, 孙志岩. 磷石膏综合利用制约因素分析及对策探讨[J]. 化工矿物与加工, 2009, 38(6):25-27.
[7] 叶学东. 磷石膏利用现状及“十三五”发展思路[C]// 中国建筑材料联合会石膏建材分会第六届年会第十届全国石膏技术交流大会暨展览会. 西宁:中国建筑材料联合会石膏建材分会, 2015:25-30.
[8] 贡长生. 现代磷化工技术和应用.上册[M]. 北京: 化学工业出版社, 2013.
[9] 孙国超, 李燕凤, 袁圣娟. 窑法磷酸工业生产评述[J]. 化肥工业, 2019, 46(3):10-15,51.
[10] 殷宪国. 中国窑法磷酸工业化技术进展[J]. 磷肥与复肥, 2014, 29(5):37-40.
[11] 娄伦武, 陈铭, 赵宗尧, 等. 盐酸法分解磷矿制磷酸研究现状[J]. 化肥工业, 2017, 44(4):5-8,11.
[12] Jin Y, Li J, Luo J H, et al. Liquid-liquid equilibrium in the system phosphoric acid/water/tri-n-butyl phosphate/calcium chloride[J]. Journal of Chemical & Engineering Data, 2010, 55(9):3196-3199.
[13] Jin Y, Zou D, Wu S Q, et al. Extraction kinetics of phosphoric acid from the phosphoric acid-calcium chloride solution by tri-n-butyl phosphate[J]. Industrial & Engineering Chemistry Research, 2015, 54(1):108-116.
[14] 李军, 金央, 罗建洪, 等. 盐酸分解中低品位磷矿制备工业级和食品级磷酸的方法:中国,101774556A[P]. 2010-07-14.
[15] 王和平, 王海良, 赵志全. 《磷矿石和磷精矿化学分析方法》国家标准修订说明[J]. 化工标准化与质量监督, 1996(8):8-9.
[16] 吴佩芝. CaSO4-H3PO4-H2SO4-H2O四元系统及其应用(上)[J]. 磷肥与复肥, 1997(5):31-36.
[17] 吴佩芝. 第三讲湿法磷酸生产中硫酸钙的结晶过程[J]. 磷肥与复肥, 1993, 8(4):16-21.
[18] Unno J, Hirasawa I. Transformation of CSD when crystal shape ch-anges with crystal size into CLD from FBRM by using Monte Carlo Analysis[J]. Advances in Chemical Engineering and Science, 2017(7):91-107.
[19] 朱鹏程, 王国栋, 曾波. 磷石膏浮选脱硅试验研究[J]. 矿产综合利用, 2014(6):39-42.
[20] 朱鹏程, 彭操, 苟苹, 等. 脱硅磷石膏制备硫酸铵和碳酸钙的研究[J]. 化工矿物与加工, 2017, 46(6):14-17,24.
[36] 杨海鹏. Cu-Ce改性USY分子筛的低温NH3-SCR性能的研究[D]. 杭州: 浙江大学, 2014.
[37] 周昊. Mn-Ce/ETS-10催化剂的低温脱硝性能研究[D]. 南京: 南京大学, 2017.
[38] 乔辉. Ce改性对原位合成Cu-SSZ-13脱除柴油车尾气NOx的影响[D]. 太原: 太原理工大学, 2014.
[39] 樊银明. Ce原位引入和负载于Mn/SAPO-34的低温NH3-SCR抗硫抗水性能与分子模拟研究[D]. 广州: 华南理工大学, 2017.
[40] 黄增斌, 李翠清, 王振, 等. 不同分子筛负载锰铈催化剂的低温NH3-SCR脱硝性能[J]. 燃料化学学报, 2016, 44(11):1388-1393.
[41] Van Kooten W E J, Kaptein J, Van den Bleek C M, et al. Hydroth-ermal deactivation of Ce-ZSM-5,Ce-beta,Ce-mordenite and Ce-Y zeolite de NOx catalysts[J]. Catalysis Letters, 1999, 63(3/4):227-231.
[42] 王俊强. Ce改性Cu-SSZ-13分子筛上NH3选择性催化还原NO的性能与机理研究[D]. 太原: 太原理工大学, 2018.
[43] 周愉千, 刘超, 宋鹏, 等. CeOx/AC催化剂NH3选择性催化还原NO[J]. 环境工程学报, 2012, 6(8):2720-2724.
[44] 沈伯雄, 史展亮, 郭宾彬, 等. CeO2/ACFN和MnOx/ACFN低温选择性催化还原NO研究[J]. 洁净煤技术, 2007, 13(1):32-35,27.
[45] 韦正乐, 黄碧纯, 黄华存, 等. CeO2/ACFN低温选择性催化还原烟气中的NO[J]. 化工进展, 2008, 27(3):412-416.
[46] Guo R T, Zhou Y, Pan W G, et al. Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic re-duction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6):2022-2025.
[47] 陈凯歌, 陈若愚, 唐喆, 等. 低温等离子改性对Ce/TiO2-Al2O3 脱硝性能的影响[J]. 硅酸盐通报, 2017, 36(10):3466-3474.
[48] Liu C X, Chen L, Li J H, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective cataly-tic reduction of NO by NH3[J]. Environmental science & technology, 2012, 46:6182-6189.
[49] Zhang L, Li L L, Cao Y, et al. Promotional effect of doping SnO2 into TiO2 over a CeO2/TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Catalysis Science & Technology, 2015, 5:2188-2196.
文章导航

/