有机膦系抑制方解石阶梯面生长的分子动力学研究
收稿日期: 2020-10-18
网络出版日期: 2021-08-11
基金资助
国家重点实验室开放基金项目(SKLASPP201601);国家自然科学基金项目(52072180);张家港市科技计划项目(ZKS1710);江苏省研究生科研创新计划项目(KYCX21_3461)
Molecular dynamics study on inhibition of calcite stepped surfaces growth by organic phosphonates
Received date: 2020-10-18
Online published: 2021-08-11
有机膦系化合物是工业冷却水系统中常用阻垢剂,对有机膦酸阻垢剂的阻垢性能及机理进行研究,能为新型阻垢剂开发应用提供合理的理论依据。根据周期性键链(PBC)理论模型,运用分子动力学方法(MD),模拟了工业冷却水循环过程中5种有机膦阻垢剂与方解石4种阶梯面的相互作用机理。结果表明,有机膦酸分子与方解石(104)4个阶梯面的结合能均为负值,相互作用为放热过程,阻垢剂分子对方解石(104)阶梯面的生长具有良好的抑制作用。通过计算结合能,得出阻垢剂分子的吸附能力由强到弱依次为HDTMP、EDTMP、ATMP、NDP、AMP;同时观察到有机膦酸分子主要吸附在晶面的活性生长点,即阶梯面的终端拐角位置与阶梯拐点位置,占据了晶面上结晶的活性位置,抑制了晶面的进一步生长。根据有机膦酸与阶梯面结合能数据,得到4种终端阶梯面的吸附能力由强到弱依次为CO3-CO3、CO3-Ca、Ca-CO3、Ca-Ca,即稳定性越强则吸附能力越弱。
陈春钰 , 门丽娟 , 居殿春 , 郭雷 , 姚富升 , 张琪 , 俞鸿宇 . 有机膦系抑制方解石阶梯面生长的分子动力学研究[J]. 无机盐工业, 2021 , 53(8) : 31 -35 . DOI: 10.19964/j.issn.1006-4990.2020-0525
Organic phosphonic compounds are commonly used scale inhibitors in industrial cooling water system.Studying on the scale inhibition performance and mechanism of organic phosphonic acid scale inhibitors can provide reasonable theoreti-cal basis for the development and application of new scale inhibitors.The interaction mechanism between five organic phos-phine scale inhibitors and four steps of calcite in the process of industrial cooling water circulation was simulated by using the molecular dynamics (MD)method based on the PBC theoretical model.The results showed that the binding energy of organic phosphonic acid molecule and calcite(104) was minus,the process of interaction was exothermic reaction,and the scale in-hibitor molecule had well repressive effect on the growth of calcite(104).Through calculating combining capacity,it could be obtained that the adsorption capacity of the scale inhibitor molecule from strong to weak was as fouows HDTMP,EDTMP,ATMP,NDP and AMP.It was observed that the organic phosphonic acid molecules were mainly adsorbed on the active growth point of the crystallo graphic plane that the position of the terminal corner of the stepped plane and the position of the stepped inflection point so that the active position of crystallization plane was occupied and the further growth of the crystal plane was restrained.Based on the binding energy data of organic phosphonic acid and step surface,the adsorption capacity of the four terminal step surfaces from strong to weak was as follows CO3-CO3,CO3-Ca,Ca-CO3,Ca-Ca,so the stability was stronger,the adsorption capacity was weaker.
Key words: organic phosphonate inhibitor; calcite; stepped surface; molecular dynamic
[1] | Shirazi S, Lin C J, Chen D. Inorganic fouling of pressure-driven me-mbrane processes:A critical review[J]. Desalination, 2015, 367:135-147. |
[2] | 余晓宇. 浅谈化工企业循环冷却水的使用标准及阻垢缓蚀处理[J]. 中国石油和化工标准与质量, 2016, 36(7):8-9. |
[3] | 王树学. 试论循环冷却水系统的阻垢和缓蚀[J]. 清洗世界, 2020, 36(6):17-18. |
[4] | 张盼盼, 蒋利辉, 孙军萍, 等. 工业循环冷却水用阻垢缓蚀剂的研究进展[J]. 化学研究, 2018, 29(6):642-646. |
[5] | 任保勇. 石油和化工行业换热设备污垢问题与治理现状[J]. 清洗世界, 2013, 29(5):42-47. |
[6] | 刘海波, 徐榕, 刘殿博. 化工冷却循环水系统节能及实际应用研究[J]. 化工管理, 2019(36):65. |
[7] | 蔡琪芳, 秦双. 论阻垢剂在工业水处理中的应用[J]. 环境与发展, 2018, 30(11):70-72. |
[8] | 陈春钰. 七种含N有机膦系化合物的阻垢性能及其作用机理的MD研究[D]. 南京: 南京理工大学, 2013. |
[9] | 张巧玲, 赖川. 阻垢剂作用机理研究进展[J]. 四川文理学院学报, 2020, 30(2):18-23. |
[10] | 冯露. 新型阻垢剂的合成及其阻垢性能的研究[D]. 武汉: 武汉工程大学, 2015. |
[11] | 余嵘, 刘扬, 王增科, 等. SAS/AMPS/IA共聚物阻垢剂对CaCO3微观形貌影响研究[J]. 当代化工, 2020, 49(3):529-533. |
[12] | 马浴铭. 碳酸钠溶液结晶抑制剂的制备与应用[J]. 无机盐工业, 2020, 52(8):63-65. |
[13] | 田晓文, 李萍, 李飞, 等. 一种新型无磷共聚物阻垢剂的研究[J]. 当代化工, 2014, 43(7):1265-1267. |
[14] | Gill J S, Varsanik R G. Computer modeling of the specific match-ing between scale inhibitors and crystal structure of scale forming minerals[J]. Journal of Crystal Growth, 1986, 76:57-62. |
[15] | Shi W, Xia M, Lei W, et al. Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal[J]. Desalination, 2013, 322:137-143. |
[16] | Shi W Y, Ding C, Yan J L, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces[J]. Desalination, 2012, 291:8-14. |
[17] | Marine C, Caroline M D, Carlos N D. A kinetic monte carlo simula-tion study of synjournal variables and diffusion coefficients in early stages of silicate oligomerization[J]. Journal of Physics Chemistry C, 2015, 119(52):28871-28884. |
[18] | Franca J, Phillip J, Mark I O, et al. The interaction of EDTA with Barium Sulfate[J]. Journal of Colloid Interface Science, 2007, 316:553-561. |
[19] | 贾玉柱. 工业循环水中阻垢缓蚀剂测定方法研究[D]. 济南: 山东大学, 2017. |
[20] | 蒋守红, 徐杰武. 有机膦酸阻碳酸钙垢性能研究[J]. 化学世界, 2013, 54(5):273-275. |
[21] | 肖丽华, 丁秋炜, 韩玉贵, 等. 聚酰胺-胺(PAMAM)树状大分子的合成与硅阻垢性能研究[J]. 精细石油化工, 2020, 37(4):42-47. |
[22] | Nora H, De L, Cooper T G A computer modeling study of the inhi-biting effect of organic adsorbates on calcite crystal growth[J]. Cry-stal Growth & Design, 2004, 4(1):123-133. |
[23] | Füger A, Konrad F, Leis A, et al. Effect of growth rate and pH on lithium incorporation in calcite[J]. Geochim et Cosmochim Acta, 2019, 248:14-24. |
[24] | Wang X C, Zhang Q. Role of surface roughness in the wettability,surface energy and flotation kinetics of calcite[J]. Powder Techno-logy, 2020, 371:55-63. |
[25] | Chen X Y, Teng F Z, Sanchez W R, et al. Experimental constraints on magnesium isotope fractionation during abiogenic calcite preci-pitation at room temperature[J]. Geochimica et Cosmochimica Acta, 2020, 281:102-117. |
[26] | Diao Y J, Li A Q, Espinosa Marzal R M. Ion specific effects on the pressure solution of calcite single crystals[J]. Geochimica et Cos-mochimica Acta, 2020, 280:116-129. |
[27] | Barkan Y, Paris G, Webb S M, et al. Sulfur isotope fractionation be-tween aqueous and carbonate-associated sulfate in abiotic calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2020, 280:317-339. |
[28] | 黄文艺, 马蓝宇, 程昊, 等. 氯化铝对碳酸钙结晶形貌的影响[J]. 无机盐工业, 2018, 50(1):20-23. |
[29] | 陈静, 许岗, 袁昕, 等. α-HgI2晶体附着能的计算[J]. 西安工业大学学报, 2018, 38(6):608-613. |
[30] | Guren M G, Putnis C V, Montes Hernandez G, et al. Direct imag-ing of coupled dissolution-precipitation and growth processes on calcite exposed to chromium-rich fluids[J]. Chemical Geology, 2020, 552.Doi: 10.1016/j.chemgeo.2020.119770. |
[31] | Ji K, Arson C. Tensile strength of calcite/HMWM and silica/HMWM interfaces:A molecular dynamics analysis[J]. Construction and Building Materials, 2020, 251.Doi: 10.1016/j.conbuildmat.2020.118925 |
[32] | 袁顺东, 王世燕, 卢贵武. 羧酸聚合物阻垢机理的分子动力学研究[J]. 青岛大学学报: 自然科学版, 2013, 26(3):32-37. |
[33] | 褚玉婷, 石文艳, 吕志敏, 等. ATMP及其取代物缓蚀阻垢机理的分子动力学研究[J]. 计算机与应用化学, 2011, 28(10):1270-1274. |
[34] | 夏明珠, 雷武, 戴林宏, 等. 膦系阻垢剂对碳酸钙阻垢机理的研究[J]. 化学学报, 2010, 68(2):143-148. |
[35] | Chen S, Du A J, Yan C. Molecular dynamic investigation of the st-ructure and stress in crystalline and amorphous silicon during li-thiation[J]. Computational Materials Science, 2020, 183.Doi: 10.1016/j.commatsci.202.109811. |
[36] | Wang G L, Feng Z J, Zheng Q C, et al. Molecular dynamics simula-tion of nano-polishing of single crystal silicon on non-continuous surface[J]. Materials Science in Semiconductor Processing, 2020, 118.Doi: 10.1016/j.mssp.2020.105168. |
/
〈 |
|
〉 |