锂离子电池高镍三元材料的包覆改性研究进展
收稿日期: 2020-09-07
网络出版日期: 2021-08-11
基金资助
青海省自然青年基金资助项目(2019-ZJ-957Q);青海师范大学中青年科研基金项目(2019zr015)
Research progress of coating modification of high nickel ternary materials for lithium-ion batteries
Received date: 2020-09-07
Online published: 2021-08-11
赵段 , 周庚 , 侯顺丽 , 蓝兹炜 , 张建茹 , 李健 , 王甲泰 . 锂离子电池高镍三元材料的包覆改性研究进展[J]. 无机盐工业, 2021 , 53(8) : 1 -7 . DOI: 10.19964/j.issn.1006-4990.2020-0503
High nickel ternary materials for lithium-ion batteries have become the preferred cathode materials for electric ve-hicles and portable electronic devices due to the advantages of long cycle life,environmental protection and low cost.However,increase of nickel content tends to make surface structure of materials unstable and increase side reaction of the interface,which leads to decrease of the cycle performance of materials.In this paper,the modification research of high nickel ternary materials from two aspects of single-layer and double-layer coating was reviewed and the influence of different coating materials on electrochemical performance was introduced.Double-layer coating could better improve the electrochemical performance of high nickel ternary materials,but the removal of HF still needs to be studied.
[1] | Kim T, Song W T, Son D Y, et al. Lithium-ion batteries:Outlook on present,future,and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7):2942-2964. |
[2] | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657. |
[3] | Yoon C S, Ryu H H, Park G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-den-sity lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9):4126-4132. |
[4] | Whitfield P S, Davidson I J, Cranswick L M D, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction[J]. Solid State Ionics, 2005, 176(5/6):463-471. |
[5] | Zheng J, Kan W H, Manthiram A. Role of Mn content on the electro-chemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2(0.0≤x≤0.08) cathodes for lithium-ion batteries[J]. ACS Applied Mate-rials & Interfaces, 2015, 7(12),6926-6934. |
[6] | Sun H H, Choi W, Lee J K, et al. Control of electrochemical proper-ties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. Journal of Power Sources, 2015, 275:877-833. |
[7] | Gong J, Wang Q, Sun J. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteri-es[J]. Thermochimica Acta, 2017, 655:176-180. |
[8] | Xu J, Lin F, Doeff M M, et al. A review of Ni-based layered oxides for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(3):874-901. |
[9] | Lee J, Urban A, Li X, et al. Unlocking the potential of cation-disor-dered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170):519-522. |
[10] | Kim N Y, Yim T, Song J H, et al. Microstructural study on degrada-tion mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of Power Sources, 2016, 307:641-648. |
[11] | Kim J, Lee H, Cha H, et al. Nickel-rich cathodes:Prospect and re-ality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6).Doi: 10.1002/aenm.201870023. |
[12] | Lu J, Peng Q, Wang W, et al. Nanoscale coating of LiMO2(M=Ni,Co,Mn) nanobelts with Li+-conductive Li2TiO3:Toward better rate capabilities for Li-ion batteries[J]. Journal of the American Che-mical Society, 2013, 135(5):1649-1652. |
[13] | Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compo-unds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electro-chemical Society, 2014, 161(6):A920-A926. |
[14] | Dong S, Zhou Y, Hai C, et al. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials[J]. Ceramics International, 2019, 45(1):144-152. |
[15] | Wang J, Du C, Yan C, et al. Al2O3 coated concentration-gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries[J]. Electrochimica Acta, 2015, 174:1185-1191. |
[16] | Gan Z, Hu G, Peng Z, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB[J]. Applied Surface Science, 2019, 481:1228-1238. |
[17] | Xiong X, Ding D, Wang Z, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole[J]. Journal of Solid State Electrochemistry, 2014, 18(9):2619-2624. |
[18] | Chen G, Peng B, Han R, et al. A robust carbon coating strategy to-ward Ni-rich lithium cathodes[J]. Ceramics International, 2020.Doi: 10.1016/j.ceramint.2020.05.160. |
[19] | Huang Y, Xia J, Hu G, et al. Conductive cyclized polyacrylonitrile coated LiNi0.6Co0.2Mn0.2O2 cathode with the enhanced electrochemi-cal performance for Li-ion batteries[J]. Electrochimica Acta, 2020, 332.Doi: 10.1016/j.electacta.2019.135505. |
[20] | Wang D, Li X, Wang W, et al. Improvement of high voltage electro-chemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Li2ZrO3 coating[J]. Ceramics International, 2015, 41(5):6663-6667. |
[21] | Zou P, Lin Z, Fan M, et al. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery[J]. Applied Surface Science, 2020, 504.Doi: 10.1016/j.apsusc.2019.144506. |
[22] | Huang X, Zhu W, Yao J, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating[J]. Journal of Materials Chemistry A, 2020, 8(34):17429-17441. |
[23] | Qu X, Yu Z, Ruan D, et al. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(15):5819-5830. |
[24] | Zhao S Y, Zhu Y T, Qian Y C, et al. Annealing effects of TiO2 coat-ing on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery[J]. Materials Letters,2020,265(Apra15):Doi:10.1016/j.matlet. 2020. 127418. |
[25] | Li Q, Zhuang W, Li Z, et al. Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification[J]. ChemElectroChem, 2020, 7(4):998-1006. |
[26] | Zhao E Y, Chen M M, Hu Z B, et al. Improved cycle stability of hi-gh-capacity Ni-rich LiNi0.8Co0.1Mn0.1O2 at high cut-off voltage by Li2SiO3 coating[J]. Journal of Power Sources, 2017, 343:345-353. |
[27] | Wu J, Tan X, Zhang J, et al. Improvement of electrochemical perfor-mance of nickel rich LiNi0.8Co0.1Mn0.1O2 cathode by lithium alumi-nates surface modifications[J]. Energy Technology, 2019, 7(2):209-215. |
[28] | Yang H, Du K, Hu G, et al. Graphene@TiO2 co-modified LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced electrochemi-cal performance under harsh conditions[J]. Electrochimica Acta, 2018, 289:149-157. |
[29] | Kong J Z, Chen Y, Cao Y Q, et al. Enhanced electrochemical per-formance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating[J]. Journal of Alloys and Compounds, 2019, 799:89-98. |
[30] | Guo S, Yuan B, Zhao H, et al. Dual-component LixTiO2@silica funct-ional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode[J]. Nano Energy, 2019, 58:673-679. |
[31] | Liu Y, Tang L B, Wei H X, et al. Enhancement on structural stabi-lity of Ni-rich cathode materials by in-situ fabricating dual-modi-fied layer for lithium-ion batteries[J]. Nano Energy, 2019, 65.Doi: 10.1016/j.nanoen.2019.104043. |
[32] | Liu W, Li X, Xiong D, et al. Significantly improving cycling perfor-mance of cathodes in lithium ion batteries:The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44:111-120. |
[33] | Ran Q, Zhao H, Hu Y, et al. Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathodefor Li-ion batteries at high cut-off voltage[J]. Electrochimica Acta, 2018, 289:82-93. |
[34] | Yang H, Wu K P, Hu G R, et al. Design and synjournal of double-functional polymer composite layer coating to enhance the electro-chemical performance of the Ni-rich cathode at the upper cutoff voltage[J]. ACS Applied Materials & Interfaces, 2019, 11(8):8556-8566. |
[35] | Li J, Liu Y, Yao W, et al. Li2TiO3 and Li2ZrO3 co-modification LiNi0.8Co0.1Mn0.1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries[J]. Solid State Ionics, 2020, 349.Doi: 10.1016/j.ssi.2020.115292. |
[36] | Ma Y, Xu M, Zhang J, et al. Improving electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries by dual-conductive coating layer of PPy and LiAlO2[J]. Journal of Alloys and Compounds, 2020.Doi: 10.1016/j.jallcom.2020.156387. |
[37] | Ju S H, Kang I S, Lee Y S, et al. Improvement of the cycling perfor-mance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-con-ductive polymer coating[J]. ACS Applied Materials & Interfaces, 2014, 6(4):2546-2552. |
[38] | Li L J, Xu M, Yao Q, et al. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanosc-ale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(45):30879-30889. |
[39] | Liang L, Wu C, Sun X, et al. Sur-/interface engineering of hierarc-hical LiNi0.6Co0.2Mn0.2O2@LiCoPO4@graphene architectures as pro-mising high-voltage cathodes toward advanced Li-ion batteries[J]. Advanced Materials Interfaces, 2017, 4(14).Doi: org/10.1002/admi.201770072. |
/
〈 |
|
〉 |