无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

碳酸锂在水和NaCl-KCl溶液体系中溶解度的在线测定

  • 王斌 ,
  • 邓小川 ,
  • 史一飞 ,
  • 董超超 ,
  • 樊发英 ,
  • 朱朝梁 ,
  • 樊洁
展开
  • 1.中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海西宁 810008
    2.青海省盐湖资源综合利用工程技术中心
    3.中国科学院大学
    4.国家能源集团科学技术研究院有限公司银川分公司
王斌(1994— ),男,硕士研究生,主要研究方向为无机化工材料制备及工艺研究;E-mail: wangbin181@mails.ucas.ac.cn

收稿日期: 2020-08-19

  网络出版日期: 2021-07-13

Online determination of the solubility of lithium carbonate in water and NaCl-KCl solution system

  • Bin Wang ,
  • Xiaochuan Deng ,
  • Yifei Shi ,
  • Chaochao Dong ,
  • Faying Fan ,
  • Chaoliang Zhu ,
  • Jie Fan
Expand
  • 1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining 810008,China
    2. Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources
    3. University of Chinese Academy of Sciences
    4. Yinchuan Branch of State Power Science & Research Institute Co.,Ltd.

Received date: 2020-08-19

  Online published: 2021-07-13

摘要

碳酸锂溶解度在工业结晶生产中是十分重要的基础数据。采用浸入式红外探头和拉曼探头在线监测溶液体系中CO32-和碳酸锂的特征峰峰强的变化,依据Lambert-Beer定律得出溶液体系中实时在线测定碳酸锂的溶解度。通过在线测定,测得碳酸锂在氯化钠-氯化钾溶液(cNaCl=0.446 6 mol/L,cKCl=0.015 8 mol/L)中的溶解度高于在水中的溶解度值。实验测试出的水中碳酸锂的溶解度数据还能与Van′t Hoff方程较好地关联,进一步测算碳酸锂在其他温度下水中的溶解度值。此外,该方法测定的碳酸锂在水中的溶解度数据比文献值中采用重量分析法测试出的溶解度数据偏小,是因为测试装置不同造成的。

本文引用格式

王斌 , 邓小川 , 史一飞 , 董超超 , 樊发英 , 朱朝梁 , 樊洁 . 碳酸锂在水和NaCl-KCl溶液体系中溶解度的在线测定[J]. 无机盐工业, 2021 , 53(7) : 73 -79 . DOI: 10.19964/j.issn.1006-4990.2020-0473

Abstract

The solubility of lithium carbonate is a very important basic data in industrial crystal production.An immersion in-frared probe and a Raman probe were used to test the changes in the characteristic peaks of CO32- and Li2CO3 in the solution system online.Based on Lambert-Beer′s law,the solubility of lithium carbonate was determined online in real time in the solu-tion system.By online monitoring,the solubility of lithium carbonate in the NaCl-KCl solution(cNaCl=0.446 6 mol/L,cKCl=0.015 8 mol/L) was measured higher than the solubility value in water.In this experiment,the solubility data in water could be well correlated with the Van′t Hoff equation,which could calculate the solubility of lithium carbonate in water at other tem-perature.Moreover,the solubility data of lithium carbonate in water determined by this method was smaller than the solubility data measured by gravimetric analysis method in the literature,which was caused by the different test equipment.

参考文献

[1] Pan Xijuan, Dou Zhihe, Zhang Tingan, et al. Basic study on direct preparation of lithium carbonate powders by membrane electroly-sis[J]. Hydrometallurgy, 2020, 191.Doi: 10.1016/j.hydromet.2019.105193.
[2] Wang Yan, Du Shichao, Wang Xuemei, et al. Spherulitic growth and morphology control of lithium carbonate:the stepwise evolution of core-shell structures[J]. Powder Technology, 2019, 355:617-628.
[3] Kadam S S, Kulkarni S A, Ribera R C, et al. A new view on the me-tastable zone width during cooling crystallization[J]. Chemical En-gineering Science, 2012, 72:10-19.
[4] 孙玉柱. 碳酸锂结晶过程研究[D]. 上海:华东理工大学, 2010.
[5] Guan Qian, Liu Yong, Ling Bo, et al. Effect of magnetic field on so-dium arsenate metastable zone width and crystal nucleation kinetics for crystallization[J]. International Journal of Chemical Kinetics, 2020, 52(7).Doi: 10.1002/kin.21362.
[6] 宋昌斌, 李润超. 碳酸锂在水中的溶解度和超溶解度的测定及热力学分析[J]. 化工进展, 2016, 35(8):2350-2354.
[7] 戈海文, 王怀有, 王敏. 碳酸锂在碳酸钠溶液中的溶解度与热力学[J]. 化工学报, 2019, 70(11):4123-4130.
[8] Wang H Y, Du B Q, Wang M. Study of the solubility,supersolubility and metastable zone width of Li2CO3 in the LiCl-NaCl-KCl-Na2SO4 system from 293.15 to 353.15 K[J]. Journal of Chemical & Engin-eering Data, 2018, 63(5):1429-1434.
[9] Cheng W T, Li Z B, Cheng F Q. Solubility of Li2CO3 in Na-K-Li-Cl brines from 20 to 90 ℃[J]. J.Chem.Thermodynamics, 2013, 67:74-82.
[10] 张莉媛, 王刚, 白树宽, 等. 表面活性剂对氯化钾结晶介稳区和诱导期测定的影响[J]. 盐科学与化工, 2020, 49(3):35-39.
[11] Nishinaga T. Handbook of crystal growth[M]. Amsterdam:Elsevier, 2015.
[12] 李泽慧. 谷氨酸钠悬浊体系的拉曼光谱定量分析[J]. 当代化工研究, 2020(5):48-51.
[13] 李敏章. 偶氮二异丁酸二甲酯的结晶过程研究[D]. 广州:华南理工大学, 2018.
[14] 刘光启, 马连湘, 项曙光. 化学化工特性数据手册.无机卷[M]. 北京: 化学工业出版社, 2013: 329.
[15] 陈俊波, 符秀娟. 近红外光谱技术在药物分析中的应用[J]. 医学食疗与健康, 2020, 18(13):160-161,163.
[16] 王玉娟. 近红外光谱分析技术在化工分析领域的应用探讨[J]. 化工管理, 2019(21):113-114.
[17] 李春哲. 近红外光谱分析技术在化工分析领域的应用[J]. 花炮科技与市场, 2018(4):170-171.
[18] 余璐. 近红外光谱分析技术在化工领域的研究应用[J]. 化工管理, 2017(24):136.
[19] 陶箴奇. 以盐湖碳酸锂为原料制备电池级碳酸锂的研究[D]. 西宁:青海大学, 2016.
[20] 朱佳兵, 钟辉, 刘善东, 等. 硫酸钙在高温盐溶液中的溶解度[J]. 化工技术与开发, 2015, 44(12):13-14.
文章导航

/