铝掺杂富锂锰基正极材料Li1.2Ni0.2Mn0.6O2的研究
收稿日期: 2020-07-21
网络出版日期: 2021-07-08
基金资助
国家自然科学基金项目(项目编号为21805198;项目名称为球形核壳P2层状-隧道复合钠锰氧正极材料制备及协同效应的原位研究)
Study on aluminum-doped lithium-rich manganese-based cathode materials of Li1.2Ni0.2Mn0.6O2
Received date: 2020-07-21
Online published: 2021-07-08
针对无钴锰基富锂材料Li1.2Ni0.2Mn0.6O2固有的循环稳定性差、循环电压衰减严重等问题,研究了铝掺杂结合固相煅烧法对该材料在微观形貌及结构、电化学性能等方面的影响。研究结果显示,铝掺杂不仅能促使该材料的表层形貌更加致密,而且可以为该材料带来更稳定的晶体结构,这有利于该材料在长充放电循环中抵抗因结构降级带来的一系列不利因素,最终致使其电化学性能更加优异。此外,当铝掺杂量为1%(物质的量分数)时该材料在高倍率下的放电比容量、循环稳定性、电压保持率等均达到最优效果,在2.0~4.8 V电压区间内0.1C倍率下首圈放电比容量高达248.8 mA·h/g,200圈循环充放电后其放电比容量保持率由未掺杂时的57.9%提升至77.6%,循环电压保持率也由84.2%提升至85.6%。以上结果充分显示了1%铝掺杂对锰基富锂材料Li1.2Ni0.2Mn0.6O2具有优异的改良效果。
关键词: 锂离子电池; 正极材料; 铝掺杂; Li1.2Ni0.2Mn0.6O2
周伟 , 陈彦逍 , 郭孝东 , 向伟 . 铝掺杂富锂锰基正极材料Li1.2Ni0.2Mn0.6O2的研究[J]. 无机盐工业, 2021 , 53(6) : 128 -133 . DOI: 10.19964/j.issn.1006-4990.2020-0415
In order to solve the inherent problems of poor cycling stability and serious cycling voltage attenuation of cobalt-free Mn-based lithium-rich materials of Li1.2Ni0.2Mn0.6O2,the effect of aluminum doping combined with solid phase calcination method on the micromorphology,structure and electrochemical properties of the material were studied in this paper.The resu-lts showed that the aluminum doping not only made the surface morphology of the material denser,but also brought a more stable crystal structure to the material,which was conducive to the resistance of the material to a series of adverse factors caused by the structural reversion in the long charge-discharge cycle,and finally led to its more excellent electrochemical per-formance.In addition,when the doping amount of aluminum was 1%,the discharge specific capacity,cycle stability and volt-age retention of the material at high rate all achieved the best optimization performance.The discharge specific capacity of the first cycle at 0.1C ratio was as high as 248.8 mA·h/g in the voltage range of 2.0~4.8 V.After 200 cycles of charging and dis-charging,the discharge specific capacity retention rate increased from 57.9% to 77.6%,and the cycle voltage retention rate also increased from 84.2% to 85.6%.The above results fully showed that 1% aluminum doping had excellent improvement effect on Mn-based lithium-rich materials of Li1.2Ni0.2Mn0.6O2.
Key words: lithium-ion battery; cathode materials; aluminum doping; Li1.2Ni0.2Mn0.6O2
[1] | Lin F, Dennis N, Li Y Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy, 2016,1(1):1-8. |
[2] | Ding X K, Luo D, Cui J X, et al. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lit-hium-ion batteries[J]. Angewandte Chemie, 2020,59(20):7778-7782. |
[3] | 何爱珍. 铝掺杂对Li1.2Ni0.2Mn0.6O2结构和电化学性能的影响[J]. 无机盐工业, 2017,49(7):74-77. |
[4] | Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical performance of high ca-pacity Li-and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2018,8(8).Doi: 10.1002/aenm.201702397. |
[5] | Nayak P K, Grinblat J, Levi M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich catho-des for Li-ion batteries[J]. Advanced Energy Materials, 2016,6(8). Doi: 10.1002/aenm.201502398. |
[6] | Wang C C, Manthiram A. Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes[J]. Journal of Materials Chemistry A, 2013,1(35):10209-10217. |
[7] | Guo H C, Xia Y G, Zhao H, et al. Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides[J]. Ceramics International, 2017,43(16):13845-13852. |
[8] | Chong S K, Wu Y F, Chen Y Z, et al. A strategy of constructing sphe-rical core-shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 catho-de material for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2017,356:153-162. |
[9] | Han Y, Shan X, Zhu G, et al. Hierarchically assembled LiNi0.8Co0.1Mn0.1O2 secondary particles with high exposure of {010} plane synthesized via co-precipitation method[J]. Electrochimica Acta, 2020,329.Doi: 10.1016/j.electacta.2019.135057. |
[10] | Dannehl N, Steinmuüller S O, Szabó D V, et al. High-resolution sur-face analysis on aluminum oxide coated Li1.2Mn0.55Ni0.15Co0.1O2 with improved capacity retention[J]. ACS applied materials & interfac-es, 2018,10(49):43131-43143. |
[11] | Zhang J C, Zhang H, Gao R, et al. New insights into the modifica-tion mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3[J]. Physical Chemistry Chemical Physics, 2016,18(19):13322-13331. |
[12] | Pei Y, Chen Q, Xiao Y C, et al. Understanding the phase transitions in spinel-layered-rock salt system:Criterion for the rational design of LLO/spinel nanocomposites[J]. Nano Energy, 2017,40:566-575. |
[13] | 王雅思, 吴锋, 张存中. 富锂锰基材料充电过程中的动态 Rct[J]. 电源技术, 2016(3):503-506. |
[14] | Lai X, Hu G, Peng Z, et al. Surface structure decoration of high ca-pacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries[J]. Journal of Power Sources, 2019,431:144-152. |
/
〈 |
|
〉 |