二维纳流体通道的构建及其性质和应用
收稿日期: 2020-07-17
网络出版日期: 2021-07-08
基金资助
国家自然科学基金(51972070);国家自然科学基金(51502046);贵州省科技计划项目重点类型(黔科合基础[2020]1Z042);贵州省研究生教育创新计划项目(黔教合YJSCXJH[2018]045)
Construction,properties and applications of two-dimensional nanofluidic channels
Received date: 2020-07-17
Online published: 2021-07-08
二维材料由于其大的比表面积、高度各向异性、大纵横比等独特性质而被人们广泛研究。由二维材料组装形成的层状薄膜的层间可作为离子选择性传输通道,利用这种特性能够实现可控的离子筛分及能量转换;另外,离子在通道中的传输行为还受到二维材料结构和表面化学的影响。以几种代表性的二维材料为例,阐述了二维纳流体通道的组装、结构、离子传输性质及其调控策略等研究现状,重点对二维纳流体通道在能量储存及转换和离子筛分领域的应用研究做了详细介绍,并对二维纳流体通道在实际应用过程中所面临的关键科学问题进行了提炼和总结,指出了目前限制二维纳流体通道应用的症结所在,同时提出了相应的解决策略。最后,对二维纳流体通道在实际应用中的发展前景进行了展望。
刘美丽 , 龙翔 , 汤海燕 , 郜邦慧 , 李龙 , 邵姣婧 . 二维纳流体通道的构建及其性质和应用[J]. 无机盐工业, 2021 , 53(6) : 101 -109 . DOI: 10.19964/j.issn.1006-4990.2020-0411
Two-dimensional(2D) materials have been widely studied due to their unique characteristics including large spe-cific surface area,highly anisotropy and large aspect ratio.The interlayer spacings of lamellar membranes assembled by two-dimensional materials can be used as the nanochannels for the ion selective transport,it can realize controllable ion sieving and energy storage and conversion.In addition,the transport behavior of ions inside the channels depends on the structures and surface chemistry of the 2D building blocks.Taking several typical 2D materials for examples,this review elaborated the research progress including assembly methods,structures,ion transport properties and the alternation strategies of these 2D nanofluidic channels,and further focused on their applied research in the fields of energy storage and conversion and ion sieving.Furthermore,the critical scientific issues of the 2D nanofluidic channels in real application were refined and conclud-ed.The factors that limited the real application of the two-dimensional nanofluidic channels were pointed out,and correspond-ing strategies were also provided.Finally,the future development of the 2D nanofluidic channels in practical applications were prospected.
Key words: two-dimensional nanomaterials; nanofluidic; ionic selectivity
[1] | Plecis A, Schoch R B, Renaud P. Ionic transport phenomena in na-nofluidics:Experimental and theoretical study of the exclusion-en-richment effect on a chip[J]. Nano Letters, 2005,5(6):1147-1155. |
[2] | Karnik R, Fan R, Yue M, et al. Electrostatic control of ions and mo-lecules in nanofluidic transistors[J]. Nano Letters, 2005,5(5):943-948. |
[3] | Stein D, Kruithof M. Surface-charge-governed ion transport in nano-fluidic channels[J]. Physical Review Letters, 2004,93(3).Doi: 10.1103/PhysRevLett.93.035901. |
[4] | Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013,23(29):3693-3700. |
[5] | Huang H, Mao Y, Ying Y, et al. Salt concentration,pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications, 2013,49(53):5963-5965. |
[6] | Wang S, Yang L, He G, et al. Two-dimensional nanochannel mem-branes for molecular and ionic separations[J]. Chemical Society Re-views, 2020,49(4):1071-1089. |
[7] | 郭维, 江雷. 基于仿生智能纳米孔道的先进能源转换体系[J]. 中国科学:化学, 2011,41(8):1257-1270. |
[8] | Osterle J F. A unified treatment of the thermodynamics of steady-st-ate energy conversion[J]. Flow Turbulence and Combustion, 1964,12(6):425-434. |
[9] | Duan C H, Wang W, Xie Q. Review article:fabrication of nanofluidic devices[J]. Biomicrofluidics, 2013,7(2).Doi: 10.1063/1.4794973. |
[10] | Li W, Tegenfeldt J O, Chen L, et al. Sacrificial polymers for nanofl-uidic channels in biological applications[J]. Nanotechnology, 2003,14(6):578-583. |
[11] | Yang R, Lu B, Wan J, et al. Fabrication of micro/nano fluidic chan-nels by nanoimprint lithography and bonding using SU-8[J]. Mi-croelectronic Engineering, 2009,86(4):1379-1381. |
[12] | Raidongia K, Huang J. Nanofluidic ion transport through reconst-ructed layered materials[J]. Journal of the American Chemical So-ciety, 2012,134(40):16528-16531. |
[13] | Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015,9(10):9451-9469. |
[14] | Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(30):10451-10453. |
[15] | Li H, Wu J, Yin Z, et al. Preparation and applications of mechani-cally exfoliated single-layer and multilayer MoS2 and WSe2 nano-sheets[J]. Accounts of Chemical Research, 2014,47(4):1067-1075. |
[16] | Castellanosgomez A, Vicarelli L, Prada E, et al. Isolation and char-acterization of few-layer black phosphorus[J]. 2D Materials, 2014,1(2).Doi: 10.1088/2053-1583/1/2/025001. |
[17] | Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nano-technology, 2008,3(9):563-568. |
[18] | Khan U, May P, O′neill A, et al. Polymer reinforcement using liq-uid-exfoliated boron nitride nanosheets[J]. Nanoscale, 2013,5(2):581-587. |
[19] | Brent J R, Savjani N, Lewis E A, et al. Production of few-layer pho-sphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014,50(87):13338-13341. |
[20] | Yu J X, Li J, Zhang W F, et al. Synjournal of high quality two-dimen-sional materials via chemical vapor deposition[J]. Chemical Sci-ence, 2015,6(12):6705-6716. |
[21] | Zhang L, Gu F, Tong L, et al. Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates[J]. Microfluidics and Nanofluidics, 2008,5(6):727-732. |
[22] | Shao J J, Zheng D Y, Li Z J, et al. Top-down fabrication of two-di-mensional nanomaterials:Controllable liquid phase exfoliation[J]. New Carbon Materials, 2016,31(2):97-114. |
[23] | Koltonow A R, Huang J X. Ionic transport two-dimensional nanofl-uidics[J]. Science, 2016,351(6280):1395-1396. |
[24] | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. |
[25] | Gao W, Alemany L B, Ci L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry, 2009,1(5):403-408. |
[26] | Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006,18(11):2740-2749. |
[27] | Guo W, Tian Y, Jiang L. Asymmetric ion transport through ion-chan-nel-mimetic solid-state nanopores[J]. Accounts of Chemical Re-search, 2013,46(12):2834-2846. |
[28] | Siwy Z S. Ion-current rectification in nanopores and nanotubes with broken symmetry[J]. Advanced Functional Materials, 2006,16(6):735-746. |
[29] | Miansari M, Friend J R, Yeo L Y. Enhanced ion current rectifica-tion in 2D graphene-based nanofluidic devices[J]. Advanced Sci-ence, 2015,2(6).Doi: 10.1002/advs.201500062. |
[30] | Wang C, Liu F, Tan Z, et al. Fabrication of bio-inspired 2D MOFs/ PAA hybrid membrane for asymmetric ion transport[J]. Advanced Functional Materials, 2020,30(9).Doi: 10.1002/adfm.201908804. |
[31] | Zhang H, Hou X, Yang Z, et al. Bio-inspired smart single asymme-tric hourglass nanochannels for continuous shape and ion transpo-rt control[J]. Small, 2015,11(7):786-791. |
[32] | Zhang Z, Li P, Kong X Y, et al. Bioinspired heterogeneous ion pump membranes:Unidirectional selective pumping and controllable gat-ing properties stemming from asymmetric ionic group distribu-tion[J]. Journal of the American Chemical Society, 2018,140(3):1083-1090. |
[33] | Qiao Y, Lu J, Ma W, et al. Optoelectronic modulation of ionic con-ductance and rectification through a heterogeneous 1D/2D nano-fluidic membrane[J]. Chemical Communications, 2020,56(24):3508-3511. |
[34] | Zhang X, Jia M, Wang L, et al. Rectified Ion transport through 2D nanofluidic heterojunctions[J]. Physica Status Solidi-Rapid Rese-arch Letters, 2019,13(7).Doi: 10.1002/pssr.201900129. |
[35] | Gao J, Koltonow A R, Raidongia K, et al. Kirigami nanofluidics[J]. Materials Chemistry Frontiers, 2018,2(3):475-482. |
[36] | Wang L, Feng Y, Zhou Y, et al. Photo-switchable two-dimensional nanofluidic ionic diodes[J]. Chemical Science, 2017,8(6):4381-4386. |
[37] | Wang C, Miao C, Zhu X, et al. Fabrication of stable and flexible nanocomposite membranes comprised of cellulose nanofibers and graphene oxide for nanofluidic ion transport[J]. ACS Applied Nano Materials, 2019,2(7):4193-4202. |
[38] | Konch T J, Gogoi R K, Gogoi A, et al. Nanofluidic transport through humic acid modified graphene oxide nanochannels[J]. Materials Chemistry Frontiers, 2018,2(9):1647-1654. |
[39] | Ji J, Kang Q, Zhou Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advan-ced Functional Materials, 2017,27(2).Doi: 10.1002/adfm.201603623. |
[40] | Guo W, Cheng C, Wu Y, et al. Bio-inspired two-dimensional nano-fluidic generators based on a layered graphene hydrogel membr-ane[J]. Advanced Materials, 2013,25(42):6064-6068. |
[41] | Lei W, Mochalin V N, Liu D, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communications, 2015,6.Doi: 10.1038/ncomms9849. |
[42] | Qin S, Liu D, Wang G, et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers[J]. Jo-urnal of the American Chemical Society, 2017,139(18):6314-6320. |
[43] | Shao J J, Raidongia K, Koltonow A R, et al. Self-assembled two-di-mensional nanofluidic proton channels with high thermal stabili-ty[J]. Nature Communications, 2015,6.Doi: 10.1038/ncomms8602. |
[44] | Liu M L, Huang M, Tian L Y, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. ACS App-plied Materials & Interfaces, 2018,10(51):44915-44923. |
[45] | Zhou Y, Ding H, Smith A T, et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based mem-branes[J]. Journal of Materials Chemistry A, 2019,7(23):14089-14096. |
[46] | Zhang M, Hou X, Wang J, et al. Light and pH cooperative nanoflui-dic diode using a spiropyran-functionalized single nanochannel[J]. Advanced Materials, 2012,24(18):2424-2428. |
[47] | Zhang Z, Xie G, Xiao K, et al. Asymmetric multifunctional hetero-geneous membranes for ph-and temperature-cooperative smart ion transport modulation[J]. Advanced Materials, 2016,28(43):9613-9619. |
[48] | Newton M R, Bohaty A K, Zhang Y, et al. pH- and ionic strength-controlled cation permselectivity in amine-modified nanoporous opal films[J]. Langmuir, 2006,22(9):4429-4432. |
[49] | Zhang Q, Liu Z, Wang K, et al. Organic/inorganic hybrid nanochan-nels based on polypyrrole-embedded alumina nanopore arrays:pH- and light-modulated ion transport[J]. Advanced Functional Materials, 2015,25(14):2091-2098. |
[50] | Xiao T, Liu Q, Zhang Q, et al. Temperature and voltage dual-respo-nsive ion transport in bilayer-intercalated layered membranes with 2D nanofluidic channels[J]. Journal of Physical Chemistry C, 2017,121(34):18954-18961. |
[51] | Naguib M, Mochalin V, Barsoum M W, et al. MXenes:A new family of two-dimensional materials[J]. Advanced Materials, 2014,26(7):992-1005. |
[52] | Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. The Journal of Physical Chemistry Letters, 2015,6(20):4026-4031. |
[53] | Hope M A, Forse A C, Griffith K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Physical Chemistry Chemical Physics, 2016,18(7):5099-5102. |
[54] | Liu G, Shen J, Ji Y, et al. Two-dimensional Ti2CTx MXene membr-anes with integrated and ordered nanochannels for efficient solvent dehydration[J]. Journal of Materials Chemistry A, 2019,7(19):12095-12104. |
[55] | Huang S, Mochalin V. Hydrolysis of 2D transition-metal carbides (MXenes)in colloidal solutions[J]. Inorganic Chemistry, 2019,58(3):1958-1966. |
[56] | Zhao X, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx(MXene) nanosheet dispersions[J]. Matter, 2019,1(2):513-526. |
[57] | Wu C, Unnikrishnan B, Chen I P, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application[J]. En-ergy Storage Materials, 2020,25:563-571. |
[58] | Natu V, Hart J L, Sokol M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal su-spensions[J]. Angewandte Chemie, 2019,131(36):12655-12660. |
[59] | Cheng H, Zhou Y, Feng Y, et al. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with janus nanobuild-ing blocks[J]. Advanced Materials, 2017,29(23).Doi: 10.1002/adma.201700177. |
[60] | Hong S, Ming F, Shi Y, et al. Two-dimensional Ti3C2Tx MXene me-mbranes as nanofluidic osmotic power generators[J]. ACS Nano, 2019,13(8):8917-8925. |
[61] | Ding L, Xiao D, Lu Z, et al. Oppositely charged Ti3C2Tx MXene mem-branes with 2D nanofluidic channels for osmotic energy harvest-ing[J]. Angewandte Chemie, 2020,59(22):8720-8726. |
[62] | Cao L, Xiao F, Feng Y, et al. Anomalous channel-length depende-nce in nanofluidic osmotic energy conversion[J]. Advanced Func-tional Materials, 2017,27(9).Doi: 10.1002/adfm.201604302. |
[63] | Siwy Z, Kosińska I, Fuliński A, et al. Asymmetric diffusion through synthetic nanopores[J]. Physical Review Letters, 2005,94(4).Doi: 10.1103/PhysRevLett.94.048102. |
[64] | Dlugolecki P, Nymeijer K, Metz S J, et al. Current status of ion ex-change membranes for power generation from salinity gradients[J]. Journal of Membrane Science, 2008,319(1):214-222. |
[65] | Wen L, Tian Y, Guo Y, et al. Conversion of light to electricity by photoinduced reversible pH changes and biomimetic nanofluidic channels[J]. Advanced Functional Materials, 2013,23(22):2887-2893. |
[66] | Zhang X, Wen Q, Wang L, et al. Asymmetric electrokinetic proton transport through 2D nanofluidic heterojunctions[J]. ACS Nano, 2019,13(4):4238-4245. |
[67] | Wang L, Wen Q, Jia P, et al. Light-driven active proton transport through photoacid- and photobase-doped janus graphene oxide membranes[J]. Advanced Materials, 2019,31(36).Doi: 10.1002/adma.201903029. |
[68] | White W, Sanborn C D, Reiter R S, et al. Observation of photovolt-aic action from photoacid-modified nafion due to light-driven ion transport[J]. Journal of the American Chemical Society, 2017,139(34):11726-11733. |
[69] | Yang X W, Cheng C, Wang Y F, et al. Liquid-mediated dense inte-gration of graphene materials for compact capacitive energy storage[J]. Science, 2013,341(6145):534-537. |
[70] | Joshi R, Carbone P, Wang F C, et al. Precise and ultrafast molec-ular sieving through graphene oxide membranes[J]. Science, 2014,343(6172):752-754. |
[71] | Su Y, Kravets V G, Wong S L, et al. Impermeable barrier films and protective coatings based on reduced graphene oxide[J]. Nature Communications, 2014,5(1).Doi: 10.1038/ncomms5843. |
[72] | Lin L, Grossman J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations[J]. Nature Communications, 2015,6(1).Doi: 10.1038/ncomms9335. |
[73] | Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membr-anes via cationic control of interlayer spacing[J]. Nature, 2017,550(7676):380-383. |
[74] | Sun P, Zheng F, Zhu M, et al. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide mem-branes based on cation-π interactions[J]. ACS Nano, 2014,8(1):850-859. |
[75] | Wen Q, Jia P, Cao L, et al. Electric-field-induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desa-lination[J]. Advanced Materials, 2020,32(16).Doi: 10.1002/adma.201903954. |
[76] | Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013,49(91):10718-10720. |
[77] | Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation thro-ugh layered WS2 nanosheet membranes[J]. ACS Nano, 2014,8(6):6304-6311. |
[78] | Yang J, Hu X, Kong X, et al. Photo-induced ultrafast active ion tr-ansport through graphene oxide membranes[J]. Nature Communications, 2019,10(1).Doi: 10.1038/s41467-019-09178-x. |
/
〈 |
|
〉 |