二维ZIF-L衍生的叶片状Fe-NC材料的制备及其氧还原催化性能研究
收稿日期: 2021-03-31
网络出版日期: 2021-07-08
基金资助
国家重点研发计划(2017YFA0206500);国家自然科学基金(22071202)
Preparation of 2D leaf-like Fe-NC materials derived from ZIF-L and study on their oxygen reduction catalytic performance
Received date: 2021-03-31
Online published: 2021-07-08
将柠檬酸铁铵作为Fe源掺入叶片状ZIF-L前驱体中,经过分段式高温热解成功制备出形貌维持良好的二维片状的Fe-NC催化剂。通过探究Fe载量对催化性质的影响发现,Fe-NC-1%催化剂在碱性电解质中呈现出最为优异的氧还原反应(ORR)活性,半波电位E1/2达到了0.897 V,动力学电流密度J0.85 V为26.70 mA/cm2,5 000次循环过后E1/2衰减5 mV,均超过了商业Pt/C催化剂。结合Raman光谱、XPS、BET法比表面积测定等分析表明,Fe-NC-1%的大比表面积、高石墨化程度、丰富的含氮活性物种等优势赋予了较高的传质效率及催化活性位点利用率,是促进其ORR反应动力学的重要因素。
叶谢维伊 , 郑志平 , 匡勤 . 二维ZIF-L衍生的叶片状Fe-NC材料的制备及其氧还原催化性能研究[J]. 无机盐工业, 2021 , 53(6) : 1 -7 . DOI: 10.19964/j.issn.1006-4990.2021-0203
Ammonium ferric citrate was used as the Fe source to be incorporated into the leaf like ZIF-L precursor,and the two-dimensional flake Fe-NC catalyst with good morphology was successfully prepared by stepwise pyrolysis.By optimizing Fe content in the precursors,the Fe-NC-1% catalyst was found to exhibit outstanding oxygen reduction reaction(ORR) per-formance in alkaline electrolytes,with the half-wave potential(E1/2) of 0.897 V,kinetic current density(J0.85 V) of 26.70 mA/cm2and Δ E1/2 reducing 5 mV after 5 000 cycles,which were all better than those of commercial Pt/C catalyst.The results combining with Raman spectrum,XPS and BET(specific surface area) method showed that the large specific surface area,high graphitization degree,and abundant N-containing active species of Fe-NC-1% led to the high mass transfer efficiency and utilization rate of catalytic active sites,which was an important factor to promote the ORR reaction kinetics.
Key words: oxygen reduction reaction; ZIF-L; N-doped carbon; Fe-based catalysts
[1] | Sui S, Wang X Y, Zhou X T, et al. A comprehensive review of Pt elec-trocatalysts for the oxygen reduction reaction:Nanostructure,acti-vity,mechanism and carbon support in PEM fuel cells[J]. Journal of Materials Chemistry A, 2017,5(5):1808-1825. |
[2] | Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free cata-lysts for oxygen reduction reaction[J]. Chemical Society Reviews 2015,44(8):2168-2201. |
[3] | Zhang H G, Hwang S, Wang M Y, et al. Single atomic iron catalysts for oxygen reduction in acidic media:Particle size control and ther-mal activation[J]. Journal of the American Chemical Society, 2017,139(40):14143-14149. |
[4] | Chen Y J, Ji S F, Wang Y G, et al. Isolated single iron atoms ancho-red on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie, 2017,56(24):6937-6941. |
[5] | 邓昕, 陈亨权, 胡野, 等. Fe-N-C类催化剂在碱性燃料电池中的研究进展[J]. 电化学, 2018,24(3):235-245. |
[6] | Proietti E, Jaouen F, Lefevre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011,2:416.Doi: 10.1038/nco-mms1427. |
[7] | Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764. |
[8] | Wang J P, Han G K, Wang L G, et al. ZIF-8 with ferrocene encap-sulated:A promising precursor to single-atom Fe embedded nitro-gendoped carbon as highly efficient catalyst for oxygen elec-troreduction[J]. Small, 2018,14(15).Doi: 10.1002/smll.201704282. |
[9] | Zhang X B, Han X, Jiang Z, et al. Atomically dispersed hierarchicall cally ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery[J]. Nano Ener-gy, 2020,71.Doi: 10.1016/j.nanoen.2020.104547. |
[10] | Ao X, Zhang W, Zhao B, et al. Atomically dispersed Fe-N-C dec-orated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction[J]. Energy & Environ-mental Science, 2020,13(9):3032-3040. |
[11] | Xu K F, Bao H Y, Tang C Y, et al. Engineering hierarchical MOFs-derived Fe-N-C nanostructure with improved oxygen reduction activity for zinc-air battery:the role of iron oxide[J]. Materials To-day Energy, 2020,18.Doi: 10.1016/j.mtener.2020.100500. |
[12] | Kida K, Okita M, Fujita K, et al. Formation of high crystalline ZIF-8 in an aqueous solution[J]. Cryst Eng Comm, 2013,15(9):1794-1801. |
[13] | Chen R Z, Yao J F, Gu Q F, et al. A two-dimensional zeolitic imi-dazolate framework with a cushion-shaped cavity for CO2 adsorption[J]. Chemical Communications, 2013,49(82):9500-9502. |
[14] | Tian J, Morozan A, Sougrati M T, et al. Optimized synjournal of Fe/N/C cathode catalysts for PEM fuel cells:A matter of iron-ligand coordination strength[J]. Angewandte Chemie, 2013,52(27):6867-6870. |
[15] | 马龙涛, 支春义. Fe,N掺杂二维多孔碳双功能催化剂及锌-空气电池中的应用[J]. 无机材料学报, 2019,34(1):103-108. |
[16] | You B, Jiang N, Sheng M L, et al. Bimetal-organic framework self-adjusted synjournal of support-free nonprecious electrocatalysts for efficient oxygen reduction[J]. ACS Catalysis, 2015,5(12):7068-7076. |
[17] | 陈驰, 赖愉姣, 周志有, 等. Fe/N/C氧还原催化剂的热稳定性及活性位结构[J]. 电化学, 2017,23(4):400-408. |
[18] | Lai L F, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2012,5(7):7936-7942. |
/
〈 |
|
〉 |