丁辛醇合成催化剂制备及工业侧线研究
收稿日期: 2020-08-12
网络出版日期: 2021-05-12
基金资助
中海油总公司级科研项目(CNOOC-KJ 135 FZDXM 00 LH 005 YJY-2017)
Stndy on preparation and industrial side line experiment of catalyst in synthesis of butyl octanol
Received date: 2020-08-12
Online published: 2021-05-12
丁辛醇是合成精细化工产品的重要原料,低压羰基合成为目前主要的工业生产工艺,其核心催化剂为三苯基膦乙酰丙酮羰基铑(ROPAC)。介绍了ROPAC催化剂制备过程及工业侧线实验结果,并通过工业放大生产实验,解决了ROPAC催化剂制备过程中的问题,二步合成单程总收率可达98%以上,ROPAC催化剂中氯离子质量分数小于0.005%。依托于天津渤化永利化工有限公司的450 kt/a丁辛醇装置,成功进行了ROPAC催化剂国产化替代工业侧线试验,自制催化剂与进口参比催化剂在100%负荷下各运行520 h,自制ROPAC催化剂与进口催化剂醛耗丙烯、产物正异比和母液中聚合物含量等指标一致,产品醛各项指标合格,催化剂整体性能与进口催化剂基本一致。
王鹏飞 , 蒋凌云 , 李晨 , 李继霞 , 郝婷婷 , 王本雷 , 臧甲忠 , 吴青 . 丁辛醇合成催化剂制备及工业侧线研究[J]. 无机盐工业, 2021 , 53(5) : 105 -110 . DOI: 10.11962/1006-4990.2020-0285
Butyl octanol is an important raw material for the synthesis of fine chemical products,low-pressure carbonylation is the main industrial process at present,and its core catalyst is rhodium(triphenylphosphine)carbonylacetylacetonate(ROPAC). The preparation process of ROPAC catalyst and the results of industrial side-line experiments were introduced.The problems in the preparation of ROPAC catalyst was solved by industrial scale-up production experiment.The total yield of two-step synthesis was over 98%.The mass fraction of chlorine ion in ROPAC catalyst was less than 0.005%.Relying on the 450 kt/a butyl octanol unit of Tianjin Bohua Yongli Chemical Co.,Ltd.,the domestic ROPAC catalyst was successfully used to replace imported catalyst from the industrial side-line test.The self-made catalyst and the imported reference catalyst were operated for 520 h respectively under 100% load.The index of the self-made ROPAC catalyst was similar to that of the imported catalyst in terms of the propylene consumption in aldehyde production and the ratio of N/I and the content of polymer in catalyst mother liquor.The indexes of aldehyde products were qualified,the overall performance of the self-made ROPAC catalyst was comparable to that of the imported catalyst.
Key words: oxo-synthesis; butyl octanol; rhodium; homogeneous catalysis; chlorion
[1] | 李仕超, 孔艳. 丁辛醇工艺技术进展及选择[J]. 四川化工, 2009,12(3):20-24. |
[2] | 史宏星. 丁辛醇工业发展状況及市场供需分析[J]. 中国石油和化工经济分析, 2019(5):56-60. |
[3] | 余黎明, 张东明. 国内外丁辛醇发展趋势分析[J]. 化学工业, 2011,29(12):21-26. |
[4] | 樊晶晶, 王丽军. 丙烯羰基化过程在催化剂失活下的长周期操作策略优化[J]. 化学工程与工艺, 2016,32(5):415-422. |
[5] | 李双新, 张大州. 羰基合成反应器及弛放气中丙烷含量过多的原因分析及其对策[J]. 石油化工, 2015,44(11):1376-1381 |
[6] | 王胜国, 熊晓东, 隋国荣, 等. 乙酰丙酮三苯基膦羰基铑(I)的合成与表征[J]. 贵金属, 2005,26(1):43-46. |
[7] | 李继霞, 白文玉, 姜旭, 等. 羰基合成用废铑催化剂的再生与铑的回收[J]. 贵金属, 2008,29(1):53-55. |
[8] | 李继霞, 于海斌, 李晨, 等. 丙烯低压羰基合成用废铑催化剂中回收铑及三氯化铑提纯[J]. 贵金属, 2011,32(2):47-51. |
[9] | 李晨, 于海斌, 刘红光, 等. 一种烯烃羰基化铑催化剂反应废液制备铑络合物催化剂的方法:中国,101690898B[P].2011-07-20. |
[10] | 于海斌, 李晨, 蒋凌云, 等. 一种乙酰丙酮二羰基铑的制备方法:中国,102030781B[P].2013-11-27. |
[11] | 李晨, 于海斌, 蒋凌云, 等. 用过氧化氢处理氢甲酰化反应含铑废催化剂回收铑的方法:中国,102925699B[P].2013-02-13. |
[12] | 蒋凌云, 于海斌, 李晨, 等. 丁辛醇废铑催化剂焙烧铑回收工艺研究[J]. 无机盐工业, 2015,47(4):51-53. |
[13] | 于海斌, 李晨, 蒋凌云, 等. 一种乙酰丙酮三苯基膦羰基铑的制备方法:中国, 106674285B[P].2019-05-28. |
[14] | 蒋凌云, 李晨, 李继霞, 等. 丁辛醇废铑催化剂消解液制备高纯三氯化铑研究[J]. 无机盐工业, 2017,49(11):76-78. |
[15] | 王金芳, 曹磊. 丁辛醇醛耗丙烯及相关经济性研究[J]. 天津科技, 2017,44(10):1-4. |
[16] | 张文, 赵传喜, 刘立斌, 等. 丁辛醇装置生产运行情况及影响因素分析[J]. 精细与专用化学品, 2014,22(10):48-51. |
/
〈 |
|
〉 |