溶剂热法制备硒化钨纳米花及其气敏性能研究
收稿日期: 2020-07-16
网络出版日期: 2021-05-12
基金资助
国家自然科学基金资助项目(21371158);国家自然科学基金资助项目(U1904213);国家自然科学基金资助项目(U20041102);河南省科技攻关项目(202102210260)
Study on preparation of flower-like WSe2 nanomaterial by solvothermal method and its gas sensing properties
Received date: 2020-07-16
Online published: 2021-05-12
以N,N-二甲基甲酰胺为分散剂,亚硒酸钠和钨酸钠为原料,采用溶剂热法制备了由超薄二维层状纳米片堆叠而成的花状硒化钨纳米材料,并研究了其气敏性能。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法对合成材料进行了结构表征。结果表明:合成的花状纳米硒化钨为六方晶相,在三乙胺、氨水、三甲胺、苯胺、甲酰胺等胺类气体的检测中,对三乙胺气体具有高选择性和超快的响应恢复速率。在最佳工作温度220 ℃下,传感器对体积分数为50×10-6的三乙胺的响应灵敏度达到20.1,其响应、恢复时间分别为6 s和3 s,最低检出限为0.3×10-6。对硒化钨材料的气敏机理也进行了讨论,该材料在气敏领域有着潜在的应用前景。
桂阳海 , 王幸辉 , 田宽 , 钱琳琳 . 溶剂热法制备硒化钨纳米花及其气敏性能研究[J]. 无机盐工业, 2021 , 53(5) : 47 -50 . DOI: 10.11962/1006-4990.2020-0337
Using N,N-dimethylformamide as dispersant as well as sodium selenite and sodium tungstate as raw materials,the flower-like WSe2 nanomaterial stacked by ultrathin two-dimensional layered nanosheets were prepared by solvothermal met-hod and its gas sensing properties were also studied.The structure of as-synthesized material was characterized by X-ray po-wder diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results indi-cated that the synthesized flower-like WSe2 was hexagonal phase and had the high selectivity and ultrafast response/recovery rate to triethylamine among the gas sensing properties to amine gases including triethylamine,ammonia,trimethylamine,ani-line and formamide.Under the optimum operating temperature of 220 ℃,the sensitivity of the sensor to triethylamine with vol-ume fraction of 50×10 -6 reaches 20.1,the response time and recovery time are 6 s and 3 s respectively,and the minimum de-tection limit is 0.3×10-6.The gas sensing mechanism for the WSe2 nanomaterial was also discussed.The obtained WSe2 had po-tential applications in the gas sensing field.
Key words: WSe2; flower-like structure; solvothermal method; gas sensing
[1] | Gui Y, Tian K, Liu J, et al. Superior triethylamine detection at room temperature by{-112} faceted WO3 gas sensor[J]. J Hazard Mater, 2019,380.Doi: 10.1016/j.hazmat.2019.120876. |
[2] | Xue D, Wang Y, Cao J, et al. Hydrothermal synjournal of CeO2-SnO2 nanoflowers for improving triethylamine gas sensing property[J]. Nanomaterials, 2018,8(12):1025. |
[3] | Chen Z, Xu H, Liu C, et al. Good triethylamine sensing properties of Au@MoS2 nanostructures directly grown on ceramic tubes[J]. Ma-terials Chemistry and Physics, 2020,245.Doi: 10.1016/j.matche mphys.2020.122683. |
[4] | Yang W, Gan L, Li H, et al. Two-dimensional layered nanomaterials for gas-sensing applications[J]. Inorganic Chemistry Frontiers, 2016,3(4):433-451. |
[5] | Abbasi A, Sardroodi J J. Investigation of the adsorption of ozone mo-lecules on TiO2/WSe2 nanocomposites by DFT computations:Appli-cations to gas sensor devices[J]. Applied Surface Science, 2018,436:27-41. |
[6] | Zhang S, Li R, Yao Z, et al. Laser annealing towards high-performance monolayer MoS2 and WSe2 field effect transistors[J]. Nanotechnolo-gy, 2020.Doi: 10.1088/1361-6528/ab8766. |
[7] | Bonaccorso F, Colombo L, Yu G, et al. Graphene,related two-dimen-sional crystals,and hybrid systems for energy conversion and stor-age[J]. Science, 2015,347(6217).Doi: 10.1126/science.1246501. |
[8] | Grayfer E D, Kozlova M N, Fedorov V E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation[J]. Advances in Colloid and Interface Science, 2017,245:40-61. |
[9] | Hussain S, Patil S A, Vikraman D, et al. Growth of a WSe2/W counter electrode by sputtering and selenization annealing for high-efficiency dye-sensitized solar cells[J]. Applied Surface Science, 2017,406:84-90. |
[10] | Guo R, Han Y, Su C, et al. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets[J]. Se-nsors and Actuators B:Chemical, 2019,300.Doi: 10.1016/j.snb.2019.127013. |
[11] | Ko K Y, Park K, Lee S, et al. Recovery improvement for large-area tungsten diselenide gas sensors[J]. ACS Appl Mater Interfaces, 2018,10(28):23910-23917. |
[12] | Cho B, Hahm M G, Choi M, et al. Charge-transfer-based gas sensing using atomic-layer MoS2[J]. Sci Rep, 2015,5.Doi: 10.1038/srep.8052. |
[13] | Friedman A L, Keith P F, Cobas E, et al. Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices[J]. Solid-State Electronics, 2014,101:2-7. |
[14] | Zhai C, Zhu M, Jiang L, et al. Fast triethylamine gas sensing resp-onse properties of nanosheets assembled WO3 hollow microspher-es[J]. Applied Surface Science, 2019,463:1078-1084. |
[15] | Xu Y, Zheng L, Yang C, et al. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature[J]. ACS Applied Materials Interfaces, 2020,12(18):20704-20713. |
[16] | 侯前进. 胺类、酰胺类化合物及氨基酸酸碱性表现讨论[J]. 课程教育研究, 2014(30):226-227. |
[17] | Cao J, Wang S, Li J, et al. Porous nanosheets assembled Co3O4 hier-archical architectures for enhanced BTX(benzene,toluene and xylene) gas detection[J]. Sensors and Actuators B:Chemical, 2020,315.Doi: 10.1016/j.snb.2020.128120. |
[18] | Liu S, Hu F, Zhang J, et al. Surface-doping effect of InVO4 nanorib-bons and the distinctive behavior as gas sensors[J]. ACS Appl Ma-ter Interfaces, 2013,5(8):3208-3211. |
[19] | Cho B, Kim A R, Park Y, et al. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2[J]. ACS Appl Mater Interfaces, 2015,7(4):2952-2959. |
/
〈 |
|
〉 |