无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

碳化法制备球霰石碳酸钙微球及形成机理

  • 赵历 ,
  • 卓民权 ,
  • 龚福忠 ,
  • 王俊 ,
  • 阮恒 ,
  • 李开成 ,
  • 李艳琳
展开
  • 1.广西大学化学化工学院,广西南宁 530004
    2.广西化工研究院有限公司
    3.广西新晶科技有限公司
赵历(1990— ),男,硕士,工程师,主要从事无机化工材料制备及工艺研究;E-mail:zhaolimm@163.com

收稿日期: 2020-09-18

  网络出版日期: 2021-03-11

基金资助

广西重点研发计划项目(AB19110043);南宁市科技攻关项目(20185066-1)

Synthesis of vaterite CaCO3 microspheres by carbonization method and its formation mechanism

  • Li Zhao ,
  • Minquan Zhuo ,
  • Fuzhong Gong ,
  • Jun Wang ,
  • Heng Ruan ,
  • Kaicheng Li ,
  • Yanlin Li
Expand
  • 1. College of Chemistry and Chemical Engineering,Guangxi University,Nanning 530004,China
    2. Guangxi Research Institute of Chemical Industry Co.,Ltd.
    3. Guangxi Xinjing Technology Co.,Ltd.

Received date: 2020-09-18

  Online published: 2021-03-11

摘要

以CaCl2-NH3-CO2为反应体系,采用分散鼓泡碳化法制备出单分散纯球霰石型碳酸钙微球。用扫描电镜(SEM、FE-SEM)、透射电镜(TEM)、X射线衍射(XRD)等手段对样品进行了表征。考察了反应初始pH、反应终止pH、反应初始温度、二氧化碳气体流速等因素对产物颗粒形貌和粒径的影响,并探讨了球霰石微球的形成机理。实验结果表明,与直接鼓泡碳化法相比,分散鼓泡碳化法形成的二氧化碳气泡数量多、大小均匀,能增大溶液中二氧化碳的过饱和度,有利于制备高纯度的单分散球霰石微球;反应初始温度低、二氧化碳气体流速大,均有利于球霰石的生成。最佳反应条件:反应初始pH为10.0,反应终止pH为7.0,二氧化碳气体流速为1 L/min。

本文引用格式

赵历 , 卓民权 , 龚福忠 , 王俊 , 阮恒 , 李开成 , 李艳琳 . 碳化法制备球霰石碳酸钙微球及形成机理[J]. 无机盐工业, 2021 , 53(3) : 38 -43 . DOI: 10.11962/1006-4990.2020-0230

Abstract

The monodispersed pure vaterite microspheres were synthesized by disperse bubbling carbonization using the reaction system of CaCl2-NH3-H2O and characterized by SEM,FE-SEM,TEM and XRD.The effects of several factors such as the initial pH,final pH,initial reaction temperature and flow rate of CO2 gas on the morphology and particle size of products were investigated.The formation mechanism of vaterite microspheres was also discussed.The experiment results demonstrate that much more CO2 bubbles with uniform size are produced by dispersed bubbling carbonization which can increase the supersaturation of CO2 in solution compared with the direct bubbling carbonization.It is helpful to prepare monodisperse vaterite microspheres with high purity.Low initial temperature and high flow rate of CO2 gas also improve the produce of vaterite.The optimum conditions are as follows: initial pH of 10.0,final pH of 7.0,flow rate of CO2 gas of 1 L/min.

参考文献

[1] Jimoh O A, Ariffin K S, Hussin H B, et al. Synjournal of precipitated calcium carbonate:a review[J]. Carbonates and Evaporites, 2018,33(2):331-346.
[2] Trushina D B, Bukreeva T V, Kovalchuk M V, et al. CaCO3 vaterite microparticles for biomedical and personal care application[J]. Materials Science & Engineering:C, 2014,45(12):644-658.
[3] Konopacka-?yskawa D. Synjournal methods and favorable conditions for spherical vaterite precipitation:a review[J]. Crystals, 2019,9(4):2-16.
[4] 蒋久信, 吴月, 何瑶, 等. 亚稳态球霰石相碳酸钙的调控制备进展[J]. 无机材料学报, 2017,32(7):681-690.
[5] Huang S C, Naka K, Chujo Y. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly (acrylic acid)s[J]. Langmuir, 2007,23(24):12086-12095.
[6] Lai Y H, Chen L S, Bao W C, et al. Glycine-mediated,selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems[J]. Crystal Growth & Design, 2015,15(3):1194-1200.
[7] Daria B T, Tatiana V B, Maria N A. Size-controlled synjournal of vaterite calcium carbonate by the mixing method:Aiming for nanosized particles[J]. Crystal Growth & Design, 2016,16(3):1311-1319.
[8] Pérez-Villarejo L, Takabait F, Mahtout L, et al. Synjournal of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium[J]. Ceramics International, 2018,44(5):5291-5296.
[9] 赵丽娜, 孔治国, 王继库. 碳酸钙中空微球的制备及机理[J]. 化工学报, 2012,43(6):1976-1980.
[10] 郑天文, 陈雪梅. 球霰石碳酸钙微球的合成及其机理[J]. 材料科学与工程学报, 2018,36(3):258-264.
[11] 王耀宣, 袁爱群, 周泽广, 等. 球霰石型纳米碳酸钙椭球形颗粒的合成[J]. 无机盐工业, 2020,52(1):54-58.
[12] 谭婷婷, 仲剑初. 球形碳酸钙的控制合成研究[J]. 无机盐工业, 2019,51(12):30-34.
[13] 陈银霞, 纪献兵, 景长勇. 花状球霰石碳酸钙微球的简易合成与表征[J]. 无机盐工业, 2018,50(3):28-30.
[14] 张晓蕾, 邱勇波. 球霰石碳酸钙的制备及其稳定性研究[J]. 无机盐工业, 2018,50(2):46-49.
[15] 丁杨, 任洋洋, 王丹, 等. 微乳液体系中形貌可控合成碳酸钙的研究[J]. 无机盐工业, 2017,49(6):33-36.
[16] 黄文艺, 马蓝宇, 程昊, 等. 球霰石型碳酸钙微球的制备及在不同溶液中转变过程的研究[J]. 无机盐工业, 2017,49(5):18-21.
[17] Udrea I, Capat C, Olaru E A, et al. Vaterite synjournal via gas-liquid route under controlled pH conditions[J]. Industrial & Engineering Chemistry Research, 2012,51(24):8185-8193.
[18] Hadiko G, Han Y S, Fuji M, et al. Synjournal of hollow calcium carbonate particles by the bubble templating method[J]. Materials Letters, 2005,59(19/20):2519-2522.
[19] Boyjoo Y, Pareek V K, Liu J. Synjournal of micro and nano-sized calcium carbonate particles and their applications[J]. Materials Chemistry A, 2014,2(35):14270-14288.
[20] Konopacka-?yskawa D, Koscielska B, Karczewski J, et al. The influence of ammonia and selected amines on the characteristics of calcium carbonate precipitated from calcium chloride solutions via carbonation[J]. Materials Chemistry and Physics, 2017,1931(6):13-18.
[21] 王芬, 余军霞, 肖春桥, 等. CO2 碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报, 2017,36(1):43-50.
[22] Svenskaya Y I, Fattah H, Inozemtseva O A, et al. Key parameters for size and shape-controlled synjournal of vaterite particle[J]. Crystal Growth & Design, 2018,18(1):331-337.
[23] Oral C M, Ercan B. Influence of pH on morphology,size and polymorph of room temperature synthesized calcium carbonate particles[J]. Powder Technology, 2018,339(11):781-788.
[24] Watanabe H, Yoshiaki M, Takeshi E, et al. Effect of initial pH on formation of hollow calcium carbonate particles by continuous CO2 gas bubbling into CaCl2 aqueous solution[J]. Advanced Powder Technology, 2009,20(1):89-93.
[25] Han Y S, Hadiko G, Fuji M, et al. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method[J]. Crystal Growth, 2005,276(3/4):541-548.
[26] Han Y S, Fuji M, Shehukin D, et al. A new model for the synjournal of hollow particles via the bubble templating method[J]. Crystal Growth & Design, 2009,9(8):3771-3775.
[27] Radek S, Pérez-Estébanez M, Viani A, et al. Characterization of vaterite synthesized at sized at various temperatures and stirring velocities without use of additives[J]. Powder Technology, 2015,284(11):265-271.
[28] 向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016,48(8):46-51.
[29] Rodriguez-Blanco J D, Shaw S, Bots P, et al. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate[J]. Journal of Alloys & Compounds, 2012,536(supp_S1), S477-S479.
[30] Sun J, Wang L S, Zhao D F. Polymorph and morphology of CaCO3 in relation to precipitation conditions in a bubbling system[J]. Chinese Journal of Chemical Engineering, 2017,25(9):1335-1342.
[31] Takeshi O, Toshio S, Kiyoshi S. The formation and transformation mechanism of calcium carbonate in water[J]. Geochimica et Cosmochimica Acta, 1987,51(10):2757-2767.
[32] Zeng Y P, Cao J, Wang Z, et al. The formation of amorphous calcium carbonate and its transformation mechanism to crystalline CaCO3 in laminar microfluidics[J]. Crystal Growth & Design, 2018,18(3):1710-1721.
[33] Ding Y, Liu Y Y, Ren Y Y, et al. Controllable synjournal of all the anhydrous CaCO3 Polymorphs with various morphologies in CaCl2NH3-CO2 aqueous system[J]. Powder Technology, 2018,333(6):410-420.
[34] Wang Y S, Moo Y X, Chen C P, et al. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyap-atite nanospheres[J]. Colloid and Interface Science, 2010,352(2):393-400.
[35] Vagenas N V, Gatsouli A, Kontoyannis C G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectro-scopy[J]. Talanta, 2003,59(4):831-836.
[36] Han Y S, Hadiko G, Fuji M, et al. Crystallization and transforma-tion of vaterite at controlled pH[J]. Journal of Crystal Growth, 2006,289(1):269-274.
文章导航

/