动态离子交换法处理电子行业蚀刻含铝废酸工艺研究
收稿日期: 2020-08-18
网络出版日期: 2021-02-06
基金资助
云天化博士后基金(209494);十三五国家重点研发计划项目“化学肥料和农药减施增效综合技术研发”(2016YFD0200404)
Study on process of dynamic ion-exchange for etching waste acid containing aluminum in electronic industry
Received date: 2020-08-18
Online published: 2021-02-06
大屏幕液晶显示器和集成电路等微电子工业的湿法蚀刻和湿法清洗工艺以电子级磷酸为原料,会产生大量含铝离子的磷酸废液。用阳离子交换树脂(Zminw-0705)对该磷酸废液在动态情况下做了处理,研究了动态情况下设备参数和操作参数对吸附效果的影响。采用傅里叶红外光谱法和X射线光电子能谱对吸附前后的树脂做了表征,验证了吸附反应的发生。用模型对动态吸附过程做了拟合,实际吸附量与理论吸附量比较接近,相关系数均在0.92以上。结果表明:在其他条件相同的情况下,150∶8为离子交换柱适宜长径比;适宜温度范围为45~55 ℃;适宜进料流速为4.67 mL/min;废酸的磷酸浓度和铝离子也在适合的操作范围内。
吴赵敏 , 杨林 , 王辛龙 , 庄海波 , 叶润洲 , 王烨 , 李耀基 . 动态离子交换法处理电子行业蚀刻含铝废酸工艺研究[J]. 无机盐工业, 2021 , 53(2) : 61 -65 . DOI: 10.11962/1006-4990.2020-0119
Wet etching and wet cleaning processes in microelectronics industry such as large-screen LCD and integrated circuits use electronic grade phosphoric acid as raw material to produce a large amount of waste phosphoric acid containing aluminum ions.The phosphoric acid waste was treated by cation exchange resin(Zminw-0705) under dynamic condition,and the influence of equipment parameters and operation parameters on adsorption effect was studied.The resin before and after adsorption was characterized by Fourier infrared spectroscopy and X-ray photoelectron spectroscopy.The model was used to fit the dynamic adsorption process.The actual adsorption capacity was close to the theoretical adsorption capacity,and the correlation coefficient was above 0.92.Results showed that under the same conditions,150∶8 was the suitable length-diameter ratio of cation exchange column;the appropriate temperature range was at 45~55 ℃;the optimal feed flow rate was 4.67 mL/min.The phosphoric acid concentration of the waste acid and aluminum ions were also within the appropriate operating range.
[1] | 范相虎, 周聪, 袁军, 等. 电子级磷酸研发现状及芯片级磷酸展望[J].研究报告与专论,2019(5):61-64. |
[2] | 李姗婷. 结晶法回收铝蚀刻废液中磷酸工艺研究[J].广东化工,2016(13):186-187. |
[3] | 周兆安, 唐瑜钟, 徐丽阳. 化学蚀刻废磷酸制备饲料级磷酸脲的研究[J]. 无机盐工业, 2018,50(10):67-69. |
[4] | 毕亚凡, 牟林琳, 徐俊虎, 等. 废刻蚀液与低品位磷矿为原料磷复肥的制备[J]. 武汉工程大学学报, 2013,35(7):27-31. |
[5] | Leng X K, Zhong Y J, Xu D H, et al. Mechanism and kinetics study on removal of iron from phosphoric acid by cation exchange resin[J]. Chinese Journal of Chemical Engineering, 2018,27(5):1050-1057. |
[6] | 李竹琬. 离子交换法脱除磷酸中镁离子的工艺研究[D]. 成都:四川大学, 2018. |
[7] | Yazdani M, Tuutijarrvi T, Bhatnagar A, et al. Adsorptive removal of arsenic(Ⅴ) from aqueous phase by Feldspars:Kinetics,mechani-sm,and thermodynamic aspects of adsorption[J]. Journal of Molec-ular Liquids, 2016,214:149-156. |
[8] | 王璐, 冯京京, 陶敏莉. 季铵离子化腈纶纤维对染料的动态吸附性能[J]. 化学工业与工程, 2019,37(2):73-79. |
[9] | Naushad M, Alothman Z A, Kha M R, et al. Equilibrium,kinetics and thermodynamic studies for the removal of organophosphorus pesticide using amberlyst-15 resin:Quantitative analysis by liquid chromatography-mass spectrometry[J]. Journal of Industrial and En-gineering Chemistry, 2014,20(6):4393-4400. |
[10] | Ferda H, Nazmiye K, Busra C E, et al. In situ preparation and pro- perties of sulfonic and phosphonic acid substituted polyphospha-zene/polyaniline composites[J]. Polymer, 2016,96:112-120. |
[11] | Lai Y M, Liang X F, Yang S Y, et al. Raman and FTIR spectra of iron phosphate glasses containing cerium[J]. Journal of Molecular Structure, 2011,992(1/2/3):84-88. |
[12] | Zhang J B, Xu Z Q, Zong Y R, et al. Analysis of NMR and FT-IR spectra on the bis(substituted cyclopentadientyl)dichlorides of titanium and zirconium[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2008,71(2):368-370. |
[13] | Misra R, Jain S K, Khatri P K. Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(Ⅵ),Cd(Ⅱ),Ni(Ⅱ) and Pb(Ⅱ) from their aqueous solution[J]. Journal of Ha-zardous Materials, 2010,185(2/3):1508-1512. |
[14] | Nakhate A V, Yadav G D. Graphene-oxide-supported SO3H-func-tionalized imidazolium-based ionic liquid:Efficient and recyclable heterogenous catalyst for alcoholysis and aminolysis reactions[J]. Chemistry Select, 2018,16(3):4547-4556. |
[15] | Lei H B, He D L, Guo Y N, et al. Synjournal and characterization of UV-absorbing fluorine-silicone acrylic resin polymer[J]. Applied Surface Science, 2018,442:71-77. |
/
〈 |
|
〉 |