无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

基于有限元方法的CeCl3和NdCl3在LiCl-KCl熔盐中的电极动力学模拟

  • 顾徐波 ,
  • 周文涛 ,
  • 王德忠
展开
  • 上海交通大学,上海 200240
顾徐波(1994— ),男,在读研究生,研究方向为核科学与技术。

收稿日期: 2020-08-10

  网络出版日期: 2021-02-06

基金资助

国家自然科学基金资助项目(11805121)

Finite element method based electrochemical electrode kinetics simulation for CeCl3 and NdCl3 in LiCl-KCl molten salt

  • Xubo Gu ,
  • Wentao Zhou ,
  • Dezhong Wang
Expand
  • Shanghai Jiao Tong University,Shanghai 200240,China

Received date: 2020-08-10

  Online published: 2021-02-06

摘要

充分理解锕系元素和镧系元素在熔盐中的行为和性质是实现反应堆乏燃料熔盐电解后处理的关键,然而熔盐电解实验所需的高温环境、腐蚀性熔盐甚至放射性物质等条件限制了实验的广泛开展。为寻求一种低成本且可靠的获取元素在熔盐中性质的途径,采用有限元方法在不同温度下模拟了不同浓度的三氯化铈和三氯化钕在LiCl-KCl熔盐中的循环伏安曲线,并与实验数据做了对比。结果表明,有限元方法能够较为准确地反映实际电化学过程,继而为乏燃料熔盐电解后处理提供数据支持。

本文引用格式

顾徐波 , 周文涛 , 王德忠 . 基于有限元方法的CeCl3和NdCl3在LiCl-KCl熔盐中的电极动力学模拟[J]. 无机盐工业, 2021 , 53(2) : 34 -37 . DOI: 10.11962/1006-4990.2020-0171

Abstract

It is the key issue for realizing the electrolytic post-ptreatment of spent fuel to fully understand the behavior and properties of various actinides and lanthanides in the molten salt.However, the high-temperature environment,corrosive molten salt and even radioactive salt required for pyroprocessing experiments limit the extensive development of them.In order to find a low-cost and reliable way to obtain the properties of the elements in the molten salt,the finite element method was utilized to simulate the cyclic voltammetry curves of CeCl3 and NdCl3 in LiCl-KCl molten salt at different temperatures and concentrations.Compared with the experimental data,the results showed that the finite element method can accurately reflect the actual electrochemical process,providing data support for the electrolytic post-ptreatment of spent fuel.

参考文献

[1] 王有群, 何辉, 林如山, 等. 无机氯化物熔盐在乏燃料干法后处理中的应用进展[J]. 无机盐工业, 2016,48(8):1-5.
[2] 黄一飞, 孟照凯, 林如山, 等. 氯化锂-氯化钾熔盐中二氧化铈的熔解还原[J]. 无机盐工业, 2016,48(10):16-19.
[3] 张萌, 王靖阳, 孙兰昕, 等. 乏燃料干法后处理中铀电沉积行为模拟研究[J]. 核动力工程, 2019,40(6):72-76.
[4] Kim S H, Park S B, Lee S, et al. Computer-assisted design and experi-mental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model[J]. Nuclear Engineering and Design, 2013,257:12-20.
[5] Zhou W, Wang Y, Zhang J. Integrated model development for safe-guarding pyroprocessing facility:Part Ⅰ-Model development and va-lidation[J]. Annals of Nuclear Energy, 2018,112:603-614.
[6] Zhou W, Wang Y, Zhang J. Integrated model development for safe-guarding pyroprocessing facility:Part Ⅱ-Case studies and model integration[J]. Annals of Nuclear Energy, 2018,112:48-61.
[7] Zhang M, Wang J, Cai Y, et al. Electroanalytical and electrodeposit-ed simulation of Ce3+ in molten LiCl-KCl [J]. Journal of the Elec-trochemical Society, 2019,166(15):D868-D874.
[8] Zhang J. Safeguards in pyroprocessing:An integrated model develop-ment and measurement data analysis[D]. Columbus,OH:The Ohio State University Research Foundation, 2017.
[9] Berzins T, Delahay P. Oscillographic polarographic waves for the re-versible deposition of metals on solid electrodes[J]. Journal of the American Chemical Society, 1953,75(3):555-559.
[10] Delahay P. New instrumental methods in electrochemistry[J]. In-strumentation and Application to Analytical and Physical Chem-istry,Interscience, 1954,102(2):46C-47C.
[11] 朱凤艳. Ce(Ⅲ)在熔盐中的电化学行为及共沉积制备Mg-Li-Ce、Al-Li-Ce合金[D]. 哈尔滨:哈尔滨工程大学, 2012.
[12] Wu E. Integrated study of rare earth drawdown by electrolysis for mo-lten salt recycle[D].Columbus,Ohio:The Ohio State University, 2017
文章导航

/