无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
综述与专论

改善无机填料混合基质膜气体分离性能的研究进展

  • 权凯栋 ,
  • 潘福生 ,
  • 陈赞 ,
  • 段翠佳 ,
  • 袁标 ,
  • 严硕
展开
  • 1.天津大学化工学院,天津 300072
    2.中海油天津化工研究设计院有限公司
权凯栋(1994— ),男,硕士研究生,主要研究方向为气体分离膜;E-mail: quankd@cnooc.com.cn

收稿日期: 2020-07-21

  网络出版日期: 2021-01-08

Research progress of improving gas separation performance of inorganic fillers for mixed matrix membranes

  • Kaidong Quan ,
  • Fusheng Pan ,
  • Zan Chen ,
  • Cuijia Duan ,
  • Biao Yuan ,
  • Shuo Yan
Expand
  • 1. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
    2. CenerTech Tianjin Chemical Research and Design Institute Co.,Ltd.

Received date: 2020-07-21

  Online published: 2021-01-08

摘要

混合基质膜(MMMs)是结合了无机填料和有机基质特点的一类膜材料,因其在气体分离应用上具有良好的渗透通量和分离性能被广泛关注。无机填料诸如二氧化硅纳米颗粒球、沸石分子筛、金属有机框架(MOF)、氧化石墨烯(GO)、碳纳米管(CNT)均被广泛应用于混合基质膜的制备,但是碍于无机填料在有机相中的分散性问题、两相相容性问题和界面缺陷问题,常会导致较差的气体分离性能。针对近年通过对无机填料进行表面官能化修饰、共价交联、多元填充、调控形貌等来改善混合基质膜气体分离性能的研究进行总结和阐述,并对其未来的发展趋势进行了展望。

本文引用格式

权凯栋 , 潘福生 , 陈赞 , 段翠佳 , 袁标 , 严硕 . 改善无机填料混合基质膜气体分离性能的研究进展[J]. 无机盐工业, 2021 , 53(1) : 1 -6 . DOI: 10.11962/1006-4990.2020-0213

Abstract

Mixed matrix membranes(MMMs) is a kind of membrane material of combining the characteristics of inorganic fillers and organic matrices has been widely concerned because of its good permeability and separation performance.The inor-ganic fillers,such as SiO2 nanoparticle spheres,zeolite molecular sieves,metal-organic framework (MOF),graphene oxide (GO)and carbon nanotubes(CNT) are all widely applied in the preparation of MMMs,but issues of poor dispersion,poor compati-bility and existence of interface defects often lead to poor gas separation performance.The factors that improve the gas separa-tion performance of MMMs through surface functional modification,covalent cross-linking,multiple fillers and size and mor-phology controlling in recent years were summarized and decomposed.The development trend of MMMs in the future was also prospected.

参考文献

[1] Zhang Y, Zhao W, Fu L, et al. Land use conversion influences soil respiration across a desert-oasis ecoregion in Northwest China,with consideration of cold season CO2 efflux and its significance[J]. Ca-tena, 2020,188:104460.
[2] Zhang S, Shen Y, Wang L, et al. Phase change solvents for post-com-bustion CO2 capture: Principle,advances,and challenges[J]. App-lied Energy, 2019,239:876-897.
[3] Han J, Zhang L, Zhao B, et al. The N-doped activated carbon deriv-ed from sugarcane bagasse for CO2 adsorption[J]. Industrial Cropsand Products, 2019,128:290-297.
[4] Kim D, Han J. Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide[J]. Applied Energy, 2020,264:114711.
[5] Li Z, Yang T, Yuan S, et al. Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage[J]. Journal of Energy Chemistry, 2020,45:128-134.
[6] Mohammad M, Isaifan R J, Weldu Y W, et al. Progress on carbon dioxide capture,storage and utilisation[J]. International Journal of Global Warming, 2020,20(2):124-144.
[7] Hou B S, Zhang Q H, Li Y Y, et al. Influence of corrosion products on the inhibition effect of pyrimidine derivative for the corrosion of carbon steel under supercritical CO2 conditions[J]. Corrosion Sci-ence, 2020,166:108442.
[8] Karaszova M, Zach B, Petrusova Z, et al. Post-combustion carbon ca-pture by membrane separation[J]. Separation and Purification Tech-nology, 2020,238:116448.
[9] Hwang S B, Seo Y T, Park S M, et al. Natural gas treatment system for offshore structure,has carbon dioxide liquefier for liquefying car-bon dioxide heated in carbon dioxide heat exchanger,and carbon dioxide pump for delivering liquefied carbon dioxide to reinjection well:KR,2074084-B1[P]. 2020-02-05.
[10] Rouzitalab Z, Maklavany D M, Jafarinejad S, et al. Lignocellulose-based adsorbents:A spotlight review of the effective parameters on carbon dioxide capture process[J]. Chemosphere, 2020,246:125756.
[11] Pang S. Advances in thermochemical conversion of woody biomass to energy,fuels and chemicals[J]. Biotechnology Advances, 2019,37(4):589-597.
[12] Li X, Sun Y, Feng F, et al. Precious metal extractant comprises ionic liquid,trichloroisocyanuric acid or dichloroisocyanuric acid,and asolvent and anion of the ionic liquid comprises at least one of chloride,bromide,iodide,thiocyanate or dinitrile amine ion:CS,110484746A[P]. 2019-11-22.
[13] Jiang Z, Chu L, Wu X, et al. Membrane-based separation technolo-gies:from polymeric materials to novel process:an outlook from China[J]. Reviews in Chemical Engineering, 2020,36(1):67-105.
[14] Park H B, Kamcev J, Robeson L M, et al. Maximizing the right st-uff:The trade-off between membrane permeability and selectivi-ty[J]. Science, 2017,356(6343):28619885.
[15] Tang X, Liu J, Shang H, et al. Gas diffusion and adsorption capaci-ty enhancement via ultrasonic pretreatment for hydrothermal syn-journal of K-KFI zeolite with nano/micro-scale crystals[J]. Micropo-rous and Mesoporous Materials, 2020,297:110036.
[16] Wilson S M W, Kennedy D A, Tezel F H. Adsorbent screening for CO2/CO separation for applications in syngas production[J]. Sepa-ration and Purification Technology, 2020,236:116268.
[17] Lee D W, Didriksen T, Olsbye U, et al. Shaping of metal-organic framework UiO-66 using alginates:Effect of operation variables[J]. Separation and Purification Technology, 2020,235:116182.
[18] Kamble A R, Patel C M, Murthy Z V P. Different 2D materials bas-ed polyetherimide mixed matrix membranes for CO2/N2 separat-ion[J]. Journal of Industrial and Engineering Chemistry, 2020,81:451-463.
[19] Favvas E P, Katsaros F K, Papageorgiou S K, et al. A review of the latest development of polyimide based membranes for CO2 separations[J]. Reactive & Functional Polymers, 2017,120:104-130.
[20] Qian Q, Wu A X, Chi W S, et al. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility[J]. Acs Applied Materials & Interfaces, 2019,11(34):31257-31269.
[21] Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nano-sheets in polymer composite materials for gas separation[J]. Na-ture Materials, 2015,14(1):48-55.
[22] Loloei M, Omidkhah M, Moghadassi A, et al. Preparation and cha-racterization of based binary and ternary mixed matrix membranes for CO2 separation[J]. International Journal of Greenhouse Gas Control, 2015,39:225-235.
[23] Kim S Y, Cho Y, Kang S W. Correlation between functional group and formation of nanoparticles in PEBAX/Ag salt/Al salt complex-es for olefin separation[J]. Polymers, 2020,12(3):667.
[24] Xin Q, Zhang Y, Shi Y, et al. Tuning the performance of CO2 seps-ration membranes by incorporating multifunctional modified silica microspheres into polymer matrix[J]. Journal of Membrane Scien-ce, 2016,514:73-85.
[25] Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008,320(1/2):390-400.
[26] Laghaei M, Sadeghi M, Ghalei B, et al. The role of compatibility be-tween polymeric matrix and silane coupling agents on the perfor-mance of mixed matrix membranes:Polyethersulfone/MCM-41[J]. Journal of Membrane Science, 2016,513:20-32.
[27] Xin Q, Liu T, Li Z, et al. Mixed matrix membranes composed of sul-fonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation[J]. Journal of Membrane Science, 2015,488:67-78.
[28] Michael Lartey. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. Jour-nal of Materials Chemistry A, 2015,3(9):5014-5022.
[29] Liu Y, Peng D, He G, et al. Enhanced CO2 permeability of membr-anes by incorporating polyzwitterion@CNT composite particles in-to polyimide matrix[J]. ACS Applied Materials & Interfaces, 2014,6(15):13051-13060.
[30] Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix mem-branes containing zeolites as a filler for gas separation applicatio-ns:A review[J]. Journal of Industrial and Engineering Chemistry, 2013,19(2):375-393.
[31] Junaidi M U M, Leo C P, Ahmad A L, et al. Fluorocarbon function-alized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases[J]. Micropo-rous & Mesoporous Materials, 2015,206:23-33.
[32] Amooghin A E, Omidkhah M, Kargari A. The effects of aminosilane grafting on NaY zeolite-Matrimid ? 5218 mixed matrix membranes for CO2/CH4 separation [J]. Journal of Membrane Science, 2015,490:364-379.
[33] Su N C, Buss H G, Mccloskey B D, et al. Enhancing separation and mechanical performance of hybrid membranes through nanoparti-cle surface modification[J]. ACS Macro Letters, 2015,4(11):1239-1243.
[34] Ma L, Svec F, Tan T, et al. Mixed matrix membrane based on cross-linked poly[(ethylene glycol) methacrylate] and metal-organic framework for efficient separation of carbon dioxide and metha-ne[J]. ACS Applied Nano Materials, 2018,1(6):2808-2818.
[35] Zhang J, Xin Q, Li X, et al. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation[J]. Journal of Membrane Science, 2019,570:343-354.
[36] Li X, Ma L, Zhang H, et al. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for effi-cient CO2 separation[J]. Journal of Membrane Science, 2015,479:1-10.
[37] Sarfraz M, Ba-Shammakh M. Pursuit of efficient CO2-capture mem-branes:graphene oxide-and MOF-integrated Ultrason? membran-es[J]. Polymer Bulletin, 2018,75(11):5039-5059.
[38] Feijani E A, Mahdavi H, Tavassoli A. Synjournal and gas permselec-tivity of CuBTC-GO-PVDF mixed matrix membranes[J]. New Jo-urnal of Chemistry, 2018,42(14):12013-12023.
[39] Yang K, Dai Y, Ruan X, et al. Stretched ZIF-8@GO flake-like fi-llers via pre-Zn(Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. Journal of Membrane Science, 2020,601:117934.
[40] Lin R, Ge L, Liu S, et al. Mixed-matrix membranes with metal-orga-nic framework-decorated CNT fillers for efficient CO2 separation[J]. ACS Applied Materials & Interfaces, 2015,7(27):14750-14757.
[41] Tanh Jeazet H B, Sorribas S, Román-Marín J M, et al. Increased se-lectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8[J]. Euro-pean Journal of Inorganic Chemistry, 2016,27:4363-4367.
[42] Castarlenas S, Téllez C, Coronas J. Gas separation with mixed ma-trix membranes obtained from MOF UiO-66-graphite oxide hybri-ds[J]. Journal of Membrane Science, 2017,526:205-211.
[43] Sarfraz M, Ba-Shammakh M. Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly se-lective mixed-matrix membranes for carbon dioxide separation from wet post combustion flue gases[J]. Journal of Industrial & Engin-eering Chemistry, 2016,36:154-162.
[44] Gong H, Lee S S, Bae T H, et al. Mixed-matrix membranes contain-ing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation[J]. Microporous and Mesoporous Materials, 2017,237:82-89.
[45] Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nano-sheets in polymer composite materials for gas separation[J]. Na-ture Materials, 2015,14(1):48-55.
[46] Sabetghadam A, Seoane B, Keskin D, et al. Metal organic frame-work crystals in mixed-matrix membranes:impact of the filler mo-rphology on the gas separation performance[J]. Advanced Functi-onal Materials, 2016,26(18):3154-3163.
文章导航

/