原料预合金化对微波无压烧结金刚石工具性能的影响
收稿日期: 2020-06-25
网络出版日期: 2020-12-15
基金资助
国家自然科学基金项目(51864028);云南省应用基础研究计划项目(2018FD053);云南省应用基础研究计划项目(2018FA029);云南省杰出青年基金项目(2019FJ005);云南省“万人计划”青年拔尖人才专项(YNWRQNBJ-2018-311);云南省教育厅科学研究资助项目(2018JS306)
Effect of pre-alloying raw material on property of diamond tools by microwave pressureless sintering
Received date: 2020-06-25
Online published: 2020-12-15
以Fe60Cu40预合金粉和单质粉为基础原料,利用微波无压烧结在850 ℃制备了FeCu/WC基金刚石复合材料刀头。通过探讨物料在微波场中的升温特性设计了微波无压烧结制度。采用扫描电子显微镜(SEM)、万能试验机、激光拉曼光谱等表征手段,对比研究了预合金粉和单质粉微波烧结样品的组织形貌等微结构信息,并获得了样品的硬度、致密度、横向断裂强度等力学性能。结果表明,与常规烧结方法相比,微波强化烧结可将温度降低至900 ℃以下,金刚石颗粒没有出现石墨化转变;FeCu/WC基配方在850 ℃微波烧结样品的洛氏硬度、相对致密度、横向断裂强度分别达到102.7 HRB、98.5%、1 035 MPa。并对微波烧结的强化机制和原料预合金化对于基体的增强机理进行了初步探讨,微波无压烧结对于预合金粉体金刚石刀头的制备表现出良好的应用前景。
郭胜惠 , 胡龙涛 , 杨黎 , 高冀芸 , 侯明 . 原料预合金化对微波无压烧结金刚石工具性能的影响[J]. 无机盐工业, 2020 , 52(12) : 23 -28 . DOI: 10.11962/1006-4990.2020-0054
With the Fe60Cu40 pre-alloy powder and corresponding elemental powders as basic raw materials,the FeCu/WC based diamond tool bits were produced by microwave pressureless sintering at 850 ℃.A microwave pressureless sintering schedule was designed by the investigation of heating characteristics for selected metallic powder formula.Scanning electron microscope(SEM),universal material testing machine and laser Raman spectroscopy were used to compare and study the microstructure information such as morphology of pre-alloy powder and single powder sintered by microwave,and mechanism properties,such as hardness,relative density and transverse fracture strength,were obtained.The results showed that microwave strengthen sintering can reduce the sintering temperature below to 900 ℃,compared with the conventional sintering method,and no graphitization transformation of diamond particles.The Rockwell hardness,relative density and the transverse fracture strength of microwave sintering sample with FeCu/WC based formula sintered at 850 ℃reached 102.7 HRB,98.5% and 1 035 MPa,respectively.The strengthening mechanism of the microwave sintering and the pre-alloying of raw material on matrix was preliminary discussed.The microwave pressureless sintering showed promising application prospects in the produc-tion of pre-alloyed powder diamond bits.
[1] | 王光祖. 超硬材料制造与应用技术[M]. 郑州: 郑州大学出版社, 2013. |
[2] | Wang Q C, Chen M H, Shan Z M, et al. Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing[J]. Journal of Materials Science & Technology, 2017,33(11):1416-1423. |
[3] | Dudina D, Bokhonov B, Ukhina A, et al. Spark plasma sintering of diamond-and nanodiamond-metal composites:advances in processing and applications,(eds) Spark plasma sintering of materials[M]. Switzerland:Springer Cham, 2019. |
[4] | Shao W Z, Ivanov V, Zhen L, et al. A study on graphitization of diamond in copper-diamond composite materials[J]. Materials Letters, 2004,58(1/2):146-149. |
[5] | Tinga W, Voss W. Microwave power engineering[M]. New York: Academic Press, 1968. |
[6] | 谭长水, 李大光, 李秀艳, 等. 微波在无机合成中的应用[J]. 无机盐工业, 2003,35(4):48-50. |
[7] | Roy R, Agrawal D, Cheng J, et al. Full sintering of powdered-metal bodies in a microwave field[J]. Nature, 1999,399:668-670. |
[8] | 丁士文, 李兰芬, 王杏田, 等. 纳米Ba(1-x)CaxTi(1-y)ZryO3的制备、结构与介电性能[J]. 无机盐工业, 2004,36(1):21-23. |
[9] | 林素英, 童庆松, 张华香, 等. 微波对固相烧结锂锰氧化合物电化学性能的影响[J]. 无机盐工业, 2004,36(6):18-20. |
[10] | 刘建设, 王适. 微波烧结技术在超硬材料制品中的应用探讨[J]. 金刚石与磨料磨具工程, 2012,32(5):67-71. |
[11] | Hou M, Wang L, Guo S H, et al. Fabrication of FeCu matrixed diamond tool bits using microwave hot-press sintering[J]. Arabian Journal Science Engineering, 2018,44:6277-6284. |
[12] | Yang L, Wang L, Gao J Y, et al. Optimization of process parameters for preparing metallic matrix diamond tool bits by microwave pressureless sintering using response surface methodology[J]. Materials, 2018,11:2185. |
[13] | Guo S H, Ye X L, Wang L, et al. Fabrication of Cu based metallic binder for diamond tools by microwave pressureless sintering[J]. Materials, 2018,11:1453. |
[14] | Pric? C V, Neamtu B V, Marinca T F, et al. Synjournal of invar 36 type alloys from elemental and prealloyed powders by mechanical alloying[J]. Powder Metallurgy, 2019,62(3):155-161. |
[15] | Li W S, Zhang J. Microstructure and mechanical properties of a novel Cu-Fe based matrix for diamond segments[C]// Nanjing:2011 International Conference on Remote Sensing,Environment and Transportation Engineering, 2011: 6108-6111. |
[16] | Xie D L, Wan L, Song D D, et al. Low-temperature sintering of FeCuCo based pre-alloyed powder for diamond bits[J]. Journal of Wuhan University Technology:Materials Science, 2016,31(4):805-810. |
[17] | Wang S X, Geng L, Liu X J, et al. Manufacture of a new kind diamond grinding wheel with Al-based bonding agent[J]. Journal of Materials Processing Technology, 2009,209(4):1871-1876. |
[18] | Lin C S, Yang Y L, Lin S T. Performances of metal-bond diamond tools in grinding alumina[J]. Journal of Materials Processing Technology, 2008,201(1/2/3):612-617. |
[19] | 丁立业, 陈江华, 魏晓莉. 金属包裹体的变化及对人造金刚石强度的影响[J]. 高压物理学报, 1990,4(2):96-104. |
[20] | Beffort O, Vaucher S, Khalid F A. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration(squeeze casting)[J]. Diamond & Related Materials, 2004,13(10):1834-1843. |
[21] | García-Marro F, Mestra A, Kanyanta V, et al. Contact damage and residual strength in polycrystalline diamond(PCD)[J]. Diamond and Related Materials, 2016,65:131-136. |
/
〈 |
|
〉 |