无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

开采背景下柴达木盆地东台吉乃尔盐湖氯化锂矿床变化特征

  • 韩光 ,
  • 韩积斌 ,
  • 刘久波 ,
  • 侯献华 ,
  • 陈金牛 ,
  • 曹毅章
展开
  • 1.青海省柴达木综合地质矿产勘查院,青海省柴达木盆地盐湖资源勘探研究重点实验室,青海格尔木 816099
    2.中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室
    3.青海省盐湖地质与环境重点实验室
    4.中国地质科学院矿产资源研究所,自然资源部盐湖资源与环境重点实验室
韩光(1982— ),男,高级工程师,长期从事盐类矿产资源综合评价工作;E-mail:114472026@qq.com

收稿日期: 2020-09-04

  网络出版日期: 2020-12-15

基金资助

国家重点研发计划课题(2017YFC0602802);中国科学院“西部之光”资助项目(Y910061016);青海省科技厅资助项目(2020-ZJ-732);青海省科技厅资助项目(2020-ZJ-932Q)

Variation characteristics of LiCl deposit under condition of mining in East Taijnar Salt Lake,Qaidam Basin

  • Guang Han ,
  • Jibin Han ,
  • Jiubo Liu ,
  • Xianhua Hou ,
  • Jinniu Chen ,
  • Yizhang Cao
Expand
  • 1. Qinghai Provincial Key Laboratory of Exploration Research of Salt Lake Resources in Qaidam Basin,Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province,Golmud 816099,China
    2. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences
    3. Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes
    4. MNR Key Laboratory of Saline Lake Resources and Environments,Institute of Mineral Resources,CAGS

Received date: 2020-09-04

  Online published: 2020-12-15

摘要

柴达木盆地东台吉乃尔盐湖是中国重要的卤水氯化锂(LiCl)矿床,研究开采前后该矿床的变化特征对进一步合理、可持续地利用盐湖卤水中的锂资源具有十分重要的意义。通过已有钻孔数据(开采前)和实测钻孔数据(开采后)的分析,从氯化锂矿床的水化学、矿体的结构和矿区水盐均衡特征方面做了对比研究。结果表明,开采后氯化锂矿床水化学特征变化明显,潜卤水进一步浓缩,演化普遍进入钾混盐(白钠镁矾)析出阶段,矿床氯化锂品位较开采前提升;承压卤水向相对淡化的趋势演化,在五元体系K+、Na+/Mg2+/Cl-、SO42--H2O 25 ℃介稳相图中位于软钾镁矾和白钠镁矾过渡区,矿床氯化锂品位较开采前下降。开采后潜卤水矿体的厚度和面积大幅减小,并形成不连续的南北矿层,改变了开采前原有矿体条状连续分布的特征;开采后承压卤水矿体无明显变化。开采后造成矿区水量补给小于卤水开采量,原有的水盐均衡状态发生变化,开采后水量变化(ΔQ)和盐量变化(ΔQc)分别为-2.83×108 m3/a和-3.331×107t/a,盐量正均衡,盐类矿物继续析出。研究结果对矿区的合理开发利用和科学保护提供依据。

本文引用格式

韩光 , 韩积斌 , 刘久波 , 侯献华 , 陈金牛 , 曹毅章 . 开采背景下柴达木盆地东台吉乃尔盐湖氯化锂矿床变化特征[J]. 无机盐工业, 2020 , 52(12) : 17 -22 . DOI: 10.11962/1006-4990.2020-0251

Abstract

The East Taijnar Salt Lake is an important LiCl deposit in brine of Qaidam Basin,China.To study on the variation characteristics of this ore deposit before and after mining is of great significance for the rational and sustainable utilization of lithium resources in brine.Base on existing borehole data(before mining) and the measured borehole data(after mining),the hydrochemistry of the LiCl deposit,the structure of the ore body and the water-salt equilibrium characteristics of the mining area were compared and researched.The results indicated that the hydrochemical characteristics of the LiCl deposit changed obviously after mining,the phreatic brine was further concentrated,and the evolution generally attained the stage of potassium mixed salt(blodite) precipitation,and the grade of LiCl of the deposit was higher than that before mining.The evolution of the confined brine was changed to relative desalination,which lain in the transition zone between picromerite and blodite in the K+,Na+/Mg2+/Cl-,SO42--H2O phase diagram at 25 ℃,and the LiCl grade of the deposit was lower than that before mining. After mining,the thickness and area of the phreatic brine deposit decreased greatly,and a discontinuous north-south ore bed was formed,which changed the original forms of continuous strip distribution before mining.There was no significant change in the confined brine ore body after mining.The original water-salt balance changed after mining,water quantity change ΔQ and salt quantity change ΔQc were -2.83×108 m3/a and -3.331×107 t/a,respectively,indicating that salt quantity was positive equilibrium,and salt minerals were continue to precipitate.The study could provide the basis for rational exploitation and scientific protection of mining area.

参考文献

[1] 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019,39(5):26-40.
[2] 苏彤, 郭敏, 刘忠, 等. 全球锂资源综合评述[J]. 盐湖研究, 2019,27(3):104-111.
[3] Choubey P K, Chung K S, Kim M S, et al. Advance review on the exploitation of the prominent energy-storage element lithium.PartⅡ:From sea water and spent lithium ion batteries(LIBs)[J]. Minerals Engineering, 2017,110:104-121.
[4] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite brine and other deposits[J]. Ore Geology Reviews, 2012,48:55-69.
[5] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability:A constraint for electric vehicles[J]. Journal of Industrial EcoEcology, 2011, 1-16.
[6] 展大鹏, 余俊清, 高春亮, 等. 柴达木盆地四盐湖卤水锂资源形成的水文地球化学条件[J]. 湖泊科学, 2010,22(5):783-792.
[7] Yu J Q, Gao C L, Cheng A Y, et al. Geomorphic,hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin,northern Tibetan Plateau,China[J]. Ore Geology Reviews, 2013,50:171-183.
[8] 荣光忠, 覃功平, 朱长海, 等. 青海省柴达木盆地东台吉乃尔湖锂硼钾矿床勘探报告[R]. 西宁:青海省地质矿产勘察院, 2002.
[9] 张彭熹, 郑喜玉, 关玉奎. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987.
[10] 沈照理, 刘光亚, 杨成田, 等. 水文地质学[M]. 北京: 科学出版社, 1985.
[11] 袁见齐, 杨谦, 孙大鹏, 等. 察尔汗盐湖钾盐矿床的形成条件[M]. 北京: 地质出版社, 1995.
[12] 魏新俊, 邵长铎, 王弭力, 等. 柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究[M]. 北京: 地质出版社, 1993.
[13] 眭跃建, 吴海霞, 田建磊. 乌勇布拉克卤水矿床水盐均衡计算方法[J]. 西部探矿工程, 2006(S1):199-200.
[14] 陈奥. 基于遥感技术的盐湖资源开发行为对柴达木盆地盐湖区景观变化的影响评估[D]. 西宁:中国科学院青海盐湖研究所, 2018.
[15] 党学亚, 常亮, 卢娜. 青藏高原暖湿化对柴达木水资源与环境的影响[J]. 中国地质, 2019,46(2):359-368.
[16] 韩积斌, 许建新, 王国强, 等. 柴达木盆地尕斯库勒盐湖区成盐物质的来源与水力迁移作用[J]. 湖泊科学, 2017,29(6):1551-1560.
[17] Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the dongtai salt lake in qaidam basin:Boron budget and sources[J]. Chemical Geology, 2014,380:74-83.
[18] 韩积斌, 许建新, 徐凯, 等. 柴达木盆地尕斯库勒盐湖地表水-地下水的转化与铀的补给通量[J]. 湖泊科学, 2019,31(6):1738-1748.
[19] 徐威. 那棱格勒河冲洪积平原地下水循环模式及其对人类活动的响应研究[D]. 长春:吉林大学, 2015.
[20] 李建森, 凌智永, 山发寿, 等. 东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示[J]. 湿地科学, 2019,17(4):391-398.
文章导航

/