微波水热法制备氧化镁-氧化铜-氧化钙复合材料及其抗菌性能
收稿日期: 2020-06-27
网络出版日期: 2020-12-15
基金资助
国家自然科学基金项目(U1607101);国家自然科学基金项目(U1808210)
Preparation and antibacterial properties of MgO-CuO-CaO composite by microwave hydrothermal method
Received date: 2020-06-27
Online published: 2020-12-15
以氯化镁、氯化铜、氯化钙为原料,十六烷基三甲基溴化铵(CTAB)为分散剂,采用微波水热法合成了氧化镁-氧化铜-氧化钙复合材料;通过X射线衍射(XRD)、扫描电镜(SEM)、氮吸附(BET)等表征手段对样品进行了结构表征;利用最小抑菌浓度(MIC)和菌落计数法对样品的抗菌性能进行了研究。实验结果表明:氧化镁-氧化铜-氧化钙复合物具有纳米片状结构,制备的MgO0.7CuO0.1CaO0.2比表面积为66.789 m2/g,平均孔径为54.117 nm,孔容为0.904 cm3/(g·nm);MgO0.7CuO0.1CaO0.2在质量浓度为500 μg/mL条件下展现出良好的抗菌性能,在质量浓度为600 μg/mL以上时抑菌率达到99.9%以上。
田其哲 , 叶俊伟 , 宁桂玲 . 微波水热法制备氧化镁-氧化铜-氧化钙复合材料及其抗菌性能[J]. 无机盐工业, 2020 , 52(12) : 12 -16 . DOI: 10.11962/1006-4990.2020-0070
MgO-CuO-CaO composites were synthesized by microwave hydrothermal using MgCl2·6H2O,CuCl2·2H2O and CaCl2 as raw materials and CTAB as dispersant.The structures of the samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),nitrogen adsorption(BET) and other characterization methods.The minimal inhibitory concentration(MIC) and colony count method were used to test the antibacterial properties of the samples.The results showed that MgO-CuO-CaO composites were nanoflake structure.The prepared MgO0.7CuO0.1CaO0.2 had a specific surface area of 66.789 m2/g,an average pore diameter of 54.117 nm and a pore volume of 0.904 cm3/(g·nm).MgO0.7CuO0.1CaO0.2 showed excellent antibacterial properties at the concentration of 500 μg/mL,and the antibacterial rate reached more than 99.9% at the concentration of 600 μg/mL.
[1] | Baker K S, Dallman T J, Field N, et al. Horizontal antimicrobial re-sistance transfer drives epidemics of multiple shigella species[J]. Nature Communications, 2018,9(1):1462. |
[2] | Xin Q, Shah H, Nawaz A, et al. Antibacterial carbon-based nanoma-terials[J]. Adv.Mater., 2019,31(45):1804838. |
[3] | Morris D E, Cleary D W, Clarke S C. Secondary bacterial infections associated with influenza pandemics[J]. Front Microbiol, 2017,8:1041. |
[4] | Ding X, Duan S, Ding X, et al. Versatile antibacterial materials:An emerging arsenal for combatting bacterial pathogens[J]. Advanced Functional Materials, 2018,28(40):1802140. |
[5] | Dadi R, Azouani R, Traore M, et al. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains[J]. Mater Sci Eng C Mater Biol Appl, 2019,104:109968. |
[6] | Wu W, Zhao W, Wu Y, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019,465:279-287. |
[7] | Qi Y, Ye J, Zhang S, et al. Controllable synjournal of transition metal ion-doped CeO(2) micro/nanostructures for improving photocatalytic performance[J]. Journal of Alloys and Compounds, 2019,782:780-788. |
[8] | 叶俊伟, 杨瑶瑶, 陈弋心, 等. 纳米氧化镁抗菌材料的研究进展[J]. 化工进展, 2018,37(04):1460-1467. |
[9] | El-Shaer A, Abdelfatah M, Mahmoud K R, et al. Correlation between photoluminescence and positron annihilation lifetime spectroscopy to characterize defects in calcined MgO nanoparticles as a first step to explain antibacterial activity[J]. Journal of Alloys and Compounds, 2020,817:8. |
[10] | Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012,6(6):5164-5173. |
[11] | Tang Z-X, Yu Z, Zhang Z-L, et al. Sonication-assisted preparation of CaO nanoparticles for antibacterial agents[J]. Química Nova, 2013,36(7):933-936. |
[12] | Ngo D T, Sooknoi T, Resasco D E. Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes[J]. Applied Catalysis B:Environmental, 2018,237:835-843. |
[13] | Deepthi N H, Vidya Y S, Anantharaju K S, et al. Optical,electrical and luminescent studies of CuO/MgO nanocomposites synthesized via sonochemical method[J]. Journal of Alloys and Compounds, 2019,786:855-866. |
[14] | Krishnamoorthy K, Moon J Y, Hyun H B, et al. Mechanistic investiga-tion on the toxicity of MgO nanoparticles toward cancer cells[J]. Journal of Materials Chemistry, 2012,22(47):24610-24617. |
[15] | 柴政泽, 叶俊伟, 田其哲, 等. 气溶胶辅助法合成球形氧化镁及其吸附性能研究[J]. 无机盐工业, 2020,52(01):39-43. |
[16] | Krishnamoorthy K, Manivannan G, Kim S J, et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy[J]. Journal of Nanoparticle Research, 2012,14(9):1063. |
[17] | Chang Y-N, Ou X-M, Zeng G-M, et al. Synjournal of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation[J]. Applied Surface Science, 2015,343:1-10. |
[18] | Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synjournal of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005,15(10):1708-1715. |
[19] | Anicic N, Vukomanovic M, Koklic T, et al. Fewer defects in the surface slows the hydrolysis rate,decreases the ROS generation potential,and improves the non-ros antimicrobial activity of MgO[J]. Small, 2018,14(26):1800205. |
[20] | Chai Z, Tian Q, Ye J, et al. Hierarchical magnesium oxide microspheres for removal of heavy ions from water and efficient bacterial inactivation[J]. Journal of Materials Science, 2020,55(10):4408-4419. |
[21] | Abed C, Ali M B, Addad A, et al. Growth,structural and optical properties of ZnO-ZnMgO-MgO nanocomposites and their photocatalytic activity under sunlight irradiation[J]. Materials Research Bulletin, 2019,110:230-238. |
[22] | Yamamoto O, Sawai J, Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution[J]. International Journal of Inorganic Materials, 2000,2(5):451-454. |
[23] | Hong W, Meng M, Liu Q, et al. Antibacterial and photocatalytic properties of Cu2O/ZnO composite film synthesized by electrodepo-sition[J]. Research on Chemical Intermediates, 2016,43(4):2517-2528. |
[24] | Karthik K, Dhanuskodi S, Gobinath C, et al. Ultrasonic-assisted CdO-MgO nanocomposite for multifunctional applications[J]. Ma-terials Technology, 2019,34(7):403-414. |
/
〈 |
|
〉 |