氨法浸出锌冶金渣尘提锌工艺及动力学研究
收稿日期: 2020-05-17
网络出版日期: 2020-12-01
基金资助
贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2018]066);贵州省科技厅技术基金项目(黔科合基础[2019]1444);六盘水市科技计划项目(52020-2018-0304);六盘水市科技计划项目(52020-2019-05-08);六盘水市科技计划项目(52020-2019-05-09);六盘水师范学院科技创新团队(LPSSYKJTD201801);六盘水师范学院科技创新团队(LPSSYKJTD201905);六盘水师范学院重点学科建设项目(LPSSYZDPYXK201708);卓越工程师培养计划项目(LPSSYzyjypyjh201801)
Study on leaching process and kinetics of zinc extraction from metallurgical slag and dust with ammonia
Received date: 2020-05-17
Online published: 2020-12-01
锌冶金渣尘作为一种重要的锌二次资源,来源广、储量大、具有较高的综合回收利用价值。以NH3-CH3COONH4-H2O为浸出体系,考察粒度、反应时间、搅拌速度、液固比、总氨浓度、NH3与NH4+物质的量比和温度对锌浸出率的影响,结果表明:控制浸出温度为25 ℃、总氨浓度为5 mol/L、液固体积质量比为5 mL/g、n(NH3)/n(NH4+)=1:1、搅拌速度为300 r/min、浸出时间为60 min,在此条件下锌的浸出率可达84%。含锌冶金渣尘浸出动力学分析显示,浸出反应表观活化能为22.66 kJ/mol,锌浸出过程的浸出速率受固体膜层扩散及界面化学反应共同控制,并获得了浸出锌的动力学速率方程。
马爱元 , 郑雪梅 , 李松 . 氨法浸出锌冶金渣尘提锌工艺及动力学研究[J]. 无机盐工业, 2020 , 52(11) : 69 -74 . DOI: 10.11962/1006-4990.2019-0643
Zinc metallurgical slag and dust is an important secondary resource,it has the advantages of wide source,large re-serves and high comprehensive recycling value.The influence of particle size,reaction time,stirring speed,liquid-solid ratio,total ammonia concentration,amount-of-substance ratio of NH3 to NH4+ and temperature on the zinc leaching rate were investi-gated in NH3-CH3COONH4-H2O system.The results showed that the control leaching temperature of 25 ℃,total ammonia co-ncentration of 5 mol/L,liquid-solid volume-mass ratio of 5 mL/g,amount-of-substance ratio of n(NH3)/n(NH4+)=1:1,stirring speed of 300 r/min and leaching time for 60 min,then the zinc leaching rate reached 84%.The leaching kinetic analysis of metallurgical slag and dust indicated that the apparent activation energy of the reaction was 22.66 kJ/mol.The leaching rate of zinc was controlled by both solid film diffusion and interfacial chemical reaction,and the kinetic rate equation of zinc leaching was obtained.
Key words: zinc; metallurgical slag and dust; ammonia leaching
[1] | 刘红召, 杨卉芃, 冯安生. 全球锌矿资源分布及开发利用[J].矿产保护与利用, 2017(1):113-118. |
[2] | 孙传尧, 宋振国, 朱阳戈, 等. 中国铜铝铅锌矿产资源开发利用现状及安全供应战略研究[J].中国工程科学, 2019(1):133-139. |
[3] | 宋凯伟, 李佳磊, 蔡锦鹏, 等. 典型氧化铜铅锌矿物浮选的表面硫化研究进展[J]. 化工进展, 2018,37(9):341-351. |
[4] | 周英伟, 高波. 热镀锌渣回收利用工艺研究进展[J]. 表面技术, 2017,46(10):91-98. |
[5] | Tang Lei, Tang Chaobo, Xiao Jin, et al. A cleaner process for lead re-covery from lead-containing hazardous solid waste and zinc leaching residue via reducing-matting smelting[J]. Journal of Cleaner Produc-tion, 2019,241.Doi: 10.1016/j.jclepro.2019.118328 . |
[6] | 罗龙海, 闫艳梅, 袁建伟, 等. 废旧锌锰电池中锰和锌在硫酸/草酸溶液中的浸出行为[J]. 湿法冶金, 2019,38(6):469-472. |
[7] | Pan D A, Lia L L, Tian X, et al. A review on lead slag generation,characteristics,and utilization[J]. Resources,Conservation & Re-cycling, 2019,146:140-155. |
[8] | 田伟军. 用氨配合法从含锌废催化剂中回收锌[J]. 无机盐工业, 2016,48(2):55-58. |
[9] | Meng L, Zhong Y W, Guo L, et al. Recovery of Cu and Zn from waste printed circuit boards using super-gravity separation[J]. Waste Ma-nagement, 2018,78:559-565. |
[10] | 牛永胜, 程亮, 李银丽, 等. 浸锌渣-高杂氧化锌铅锌回收工艺研究[J]. 甘肃冶金, 2019,47(4):16-18. |
[11] | 王冬斌, 梁精龙, 李慧, 等. 冶金含锌粉尘中回收氧化锌的工艺综述[J]. 中国有色冶金, 2018,47(6):46-50. |
[12] | 雷华志, 杨光灿, 李雨耕, 等. 从锌渣中直接热力回收金属锌的工艺研究[J]. 云南冶金, 2018,47(4):63-66. |
[13] | 王超, 郭宇峰, 杨凌志, 等. 含锌渣尘中有价金属回收利用现状与研究进展[J]. 金属矿山, 2019,48(3):27-35. |
[14] | Sethurajan M, Huguenot D, Jain R, et al. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach re-sidues[J]. Journal of Hazardous Materials, 2016,324:71-82. |
[15] | Fattahi A, Rashchi F, Abkhoshk E. Reductive leaching of zinc,co-balt and manganese from zinc plant residue[J]. Hydrometallurgy, 2016,161:185-192. |
[16] | Ashtari P, Pourghahramani P. Selective mechanochemical alkaline leaching of zinc from zinc plant residue[J]. Hydrometallurgy, 2015,156:165-172. |
[17] | Steer J M, Griffiths A J. Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry[J]. Hydrometallurgy, 2013,140:34-41. |
[18] | 刘智勇. 氧化锌矿物在氨-铵盐-水体系中的浸出机理[D]. 长沙:中南大学, 2012. |
[19] | Rao S, Yang T Z, Zhang D C, et al. Leaching of low grade zinc oxide ores in NH4Cl-NH3,solutions with nitrilotriacetic acid as complexing agents[J]. Hydrometallurgy, 2015,158:101-106. |
[20] | Popescu I A, Varga T, Egedy A, et al. Kinetic models based on an-alysis of the dissolution of copper,zinc and brass from WEEE in a sodium persulfate environment[J]. Computers & Chemical Engin-eering, 2015,83:214-220. |
/
〈 |
|
〉 |