无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

N-Zn/TiO2光催化氧化脱硫废液中亚硫酸钠的研究

  • 胡敏 ,
  • 郭嘉 ,
  • 吴华东 ,
  • 张林锋
展开
  • 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室,湖北武汉 430073
胡敏(1996— ),女,硕士研究生,研究方向为双碱法脱硫废液中亚硫酸钠的氧化工艺研究;E-mail: 735477538@qq.com

收稿日期: 2020-04-27

  网络出版日期: 2020-11-24

基金资助

国家自然科学基金(21503152);武汉工程大学科学研究基金(K201640,K201760)

Photocatalytic oxidation of sodium sulfite in desulfurization wastewater by N-Zn/TiO2

  • Min Hu ,
  • Jia Guo ,
  • Huadong Wu ,
  • Linfeng Zhang
Expand
  • Key Laboratory for Green Chemical Process of Ministry of Education,Wuhan Institute of Technology,Wuhan 430073,China

Received date: 2020-04-27

  Online published: 2020-11-24

摘要

采用溶胶凝胶法合成了氮、锌共掺杂二氧化钛催化剂(N-Zn/TiO2),用于催化氧化双碱法脱硫废液中的亚硫酸钠。通过X射线衍射、红外光谱、X射线光电子能谱和场发射环境扫描电镜对N-Zn/TiO2催化剂的形貌和结构进行了表征。并考察了催化剂用量、溶液pH、空气流量、亚硫酸钠初始浓度对N-Zn/TiO2光催化氧化亚硫酸钠的影响。实验结果表明:在不加N-Zn/TiO2催化剂的情况下,将脱硫废液中的亚硫酸钠完全氧化需要8 h,而N-Zn/TiO2在紫外光照射下能在1.5 h内将亚硫酸钠催化氧化完全。催化剂的用量对反应速率的影响最大,废液中亚硫酸钠的氧化速率随着催化剂用量的增多呈上升趋势。其次是溶液的pH对亚硫酸钠的氧化有较大影响,随着pH的增大,亚硫酸钠的氧化速率呈先增大后减小的趋势。实验所得到的最优反应条件为:催化剂用量为m(催化剂)/m(亚硫酸钠)=1/100,pH=6.5,空气流量为4 L/min。

本文引用格式

胡敏 , 郭嘉 , 吴华东 , 张林锋 . N-Zn/TiO2光催化氧化脱硫废液中亚硫酸钠的研究[J]. 无机盐工业, 2020 , 52(10) : 151 -156 . DOI: 10.11962/1006-4990.2019-0598

Abstract

N-Zn co-doped TiO2 catalyst(N-Zn/TiO2) was synthesized by sol-gel method and then was applied in photo-oxidation of sodium sulfite in double alkali desulfurization wastewater.The morphology and structure of N-Zn/TiO2 catalyst were characterized by XRD,FT-IR,XPS and FESEM.The effects of catalyst dosage,pH of solution,air flow rate and initial concentration of Na2SO3 on photocatalytic activities of N-Zn/TiO2 catalyst were investigated.The results showed that N-Zn/TiO2 catalyst could completely oxide Na2SO3 within 1.5 h.However,it takes 8 h to completely oxide the same pollutants without catalysts.The oxidation rate of Na2SO3 increased with the increasing of catalyst dosage.In addition,with the increasing of pH,the reaction rate firstly increased and then began to fall.The optimal reaction conditions were obtained as follow:catalyst dosage(the mass ratio of catalyst to Na2SO3) was 1/100, pH=6.5 and air flow rate was 4 L/min.

参考文献

[1] 马连元. 双碱法脱硫技术研究[J]. 城市环境与城市生态, 2000,13(1):60-62.
[2] 马岸奇, 裘雨晓, 雷建章. 钠钙双碱法烟气脱硫技术治理方法浅析[J]. 砖瓦, 2017(8):23-27.
[3] 徐振魁. 浅谈工业烟气双碱法脱硫技术[J]. 黑龙江科技信息, 2010(8):28.
[4] 来勇. 化学沉淀—絮凝法处理双碱法烟气脱硫废水[D]. 杭州:浙江大学, 2005.
[5] Bao J, Yang L, Sun W, et al. Removal of fine particles by heterogeneous condensation in the double-alkali desulfurization process[J]. Chemical Engineering and Processing:Process Intensification, 2011,50(8):828-835.
[6] 付新. 水热合成二氧化钛纳米颗粒及光致发光性能研究[J]. 无机盐工业, 2019,51(10):32-35.
[7] 高雅男. 二氧化钛-钒酸铋复合材料光催化降解布洛芬的研究[J]. 无机盐工业, 2019,51(6):88-91.
[8] 张少峰, 胡柏松, 陈兴林, 等. 二氧化钛纳米管阵列的制备及其强化传热应用[J]. 无机盐工业, 2018,50(1):36-40.
[9] 李丹丹, 刘中清, 颜欣. TiO2纳米管阵列光电催化氧化处理氨氮废水[J]. 无机化学学报, 2011,27(7):1358-1362.
[10] 孙勇, 刘红晶, 姚辉. 二氧化钛光催化氧化亚硫酸钠[J]. 应用化工, 2018,47(7):1373-1381.
[11] Rao V N, Reddy N L, Kumari M M, et al. Photocatalytic recovery of H2 from H2S containing wastewater:Surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures[J]. Applied Catalysis B:Environmental, 2019,254:174-185.
[12] 张帅, 张立生, 李慧, 等. 二氧化钛薄膜制备工艺的研究进展[J]. 无机盐工业, 2019,51(7):15-18.
[13] 刘玲, 何玉林, 董月芬. 氮离子掺杂对二氧化钛纳米片负极材料电化学性能的影响[J]. 无机盐工业, 2018,50(10):25-28.
[14] 胡驰. 石墨烯/二氧化钛的制备及钙钛矿太阳能电池性能研究[J]. 无机盐工业, 2018,50(8):49-51.
[15] 郭婧, 戴友芝, 刘林. 光催化氧化技术在环境治理方面的研究进展[J]. 广东化工, 2019,46(16):85-86.
[16] 程萍, 顾明元, 金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展, 2005,17(1):8-14.
[17] Bathla A, Pal B. Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019,79:314-325.
[18] Xiang Jingyu, Wang Xiangdong, Zhang Kui, et al. Synjournal of N-Zn co-doped mesoporous TiO2 by a fast Sol-Gel method[J]. Rare Metal Materials and Engineering, 2016,45:51-54.
[19] 陈琦丽, 唐超群, 肖循. TiO2纳米微粒的溶胶-凝胶法制备及XRD分析[J]. 材料科学与工程, 2002,20(2):75-77.
[20] Oladipo G O, Akinlabi A K, Alayande S O, et al. Synjournal,characterization,and photocatalytic activity of silver and zinc co-doped TiO2 nanoparticle for photodegradation of methyl orange dye in aqueous solution[J]. Canadian Journal of Chemistry, 2019,999:1-9.
[21] 罗扬. 氮掺杂与C3N4改性的TiO2光催化剂的制备及其在降解废水中的应用[D]. 广州:广州大学, 2018.
[22] 刘美琪, 陈学青, 王志彦. 铁、钴掺杂氧化锌纳米材料及其红外吸波性能研究[J]. 人工晶体学报, 2016,45(12):2785-2789.
[23] Yao D S, Zhao Y L, Zhu L, et al. Preparation of zinc-doped titanium dioxide nanorod arrays and their application in dye sensitized solar cells[J]. International Journal of Electrochemical Science, 2015,10(7):5914-5923.
[24] Wu C H, Kuo C Y, Lin C J, et al. Preparation of N-using a microwave/Sol-Gel method and its photocatalytic activity for bisphenol a under visible-light and sunlight irradiation[J]. International Journal of Photoenergy, 2013,10:1-9.
[25] 尚鹏博, 郑玉婴, 冀峰. 锌离子掺杂的二氧化钛介孔空心微球的制备及光催化性能[J]. 无机化学学报, 2014,30(10):2323-2331.
[26] 鞠剑峰, 缪勤华, 吴东辉. 掺氮纳米ZnO/TiO2粉体对印染废水的处理[J]. 印染, 2009,35(3):30-33.
[27] 周存, 马悦. 氮掺杂二氧化钛的制备及性能[J]. 天津工业大学学报, 2019,39(11):30-36.
[28] 柏源, 孙红旗, 金万勤. pH对氮掺杂TiO2物化性质和光催化活性的影响[J]. 无机材料学报, 2008,23(2):181-186.
文章导航

/