无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
环境·健康·安全

利用磷化渣制备电池级磷酸铁

  • 欧小菊 ,
  • 柴琪 ,
  • 李正科 ,
  • 王威燕 ,
  • 杨运泉
展开
  • 湘潭大学,湖南湘潭 411105
欧小菊 (1995— ) ,女,硕士,研究方向为固废资源化利用; E-mail: 1471759337@qq.com

收稿日期: 2020-04-18

  网络出版日期: 2020-11-24

基金资助

国家自然科学基金(51974274);湖南省自然科学基金(14JJ5027)

Preparation of battery grade iron phosphate from phosphating slag

  • Xiaoju Ou ,
  • Qi Chai ,
  • Zhengke Li ,
  • Weiyan Wang ,
  • Yunquan Yang
Expand
  • Xiangtan University,Xiangtan 411105,China

Received date: 2020-04-18

  Online published: 2020-11-24

摘要

以含锌磷化渣为原料,先用氢氧化钠浸取制得磷酸钠溶液,再采用萃取法去除该溶液中的微量锌,在净化液中加入六水合氯化铁反应制得磷酸铁产品。实验结果表明:采用氢氧化钠浸取磷化渣,能有效地去除磷化渣中的金属离子,获得含微量锌的磷酸钠溶液,磷酸根的浸取率可达93.97%,磷酸根的总利用率可达78.31%;采用双硫腙与P204萃取剂对该溶液进行萃取,其双萃取剂混合萃锌效果明显优于它们相应的单种萃取剂萃锌效果。在有机相与水相体积比=1∶5时,锌的单级萃取率可达55.39%,产品磷酸铁中锌含量低于30.0 μg/g。研究表明,采用氢氧化钠浸取和双硫腙与P204双萃取剂除杂的方法,可有效回收含锌磷化渣中的磷酸根并制备出电池级磷酸铁。

本文引用格式

欧小菊 , 柴琪 , 李正科 , 王威燕 , 杨运泉 . 利用磷化渣制备电池级磷酸铁[J]. 无机盐工业, 2020 , 52(10) : 135 -139 . DOI: 10.11962/1006-4990.2019-0583

Abstract

Using zinc-containing phosphating slag as raw material,firstly use NaOH leaching to obtain Na3PO4 solution,then remove the trace amount of zinc in the solution by extraction method and add FeCl3·6H2O to the purified liquid to obtain iron phosphate product.The experimental results showed that NaOH leaching can effectively remove the metal ions in the phosphate ing slag and then obtain the Na3PO4 solution containing a trace amount of zinc.The leaching rate of the phosphate can reach 93.97% and the total utilization rate can reach 78.31%.The dithizone and P204 extractants were used to extract the solution.The zinc extraction effect of double extractant was significantly better than their corresponding single extractant effect.When O∶A=1∶5,the extraction rate of zinc was up to 55.39% and the content of zinc in the product iron phosphate was less than 30.0 μg/g.Research showed that the use of NaOH leaching and dithizone and P204 double extractant impurity removal method can effectively recover the phosphate in the zinc-containing phosphating slag and prepare battery-grade iron phosphate.

参考文献

[1] 张圣麟, 李红玲, 郑洪河, 等. 低温锌系磷化促进剂研究[J]. 涂料工业, 2005,35(9):60-61.
[2] 武晓燕, 黄继承, 郎庆成, 等. 磷化渣资源化研究进展与展望[J]. 再生资源与循环经济, 2015(8):38-41.
[3] 范洪强, 李淑英. 固废磷化渣的排放现状及资源化研究进展[J]. 现代化工, 2007,27(s1):97-99.
[4] 范洪强, 李淑英, 焦扬. 固废磷化渣制备复合防锈颜料的研究[J]. 装备环境工程, 2008,5(2):83-86.
[5] Chiang Y M, Meethong N, Kao Y H. Reply to comment on“aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties”[J]. Advanced Functional Materials, 2010, 19(7):1060-1070.
[6] 冯国彪, 邓宏. 锂离子电池正极材料磷酸铁锂研究进展[J]. 无机盐工业, 2011,43(3):14-17.
[7] Shao J, Li X, Wei J, et al. Synjournal of iron phosphate and their composites for lithium/sodium ion batteries[J]. Advanced Sustainable Systems, 2018,2(8/9):1700154.
[8] Jugovic D, Uskokovic D. A review of recent developments in the synjournal procedures of lithium iron phosphate powders[J]. Journal of Power Sources, 2009,190(2):538-544.
[9] Zhu Y, Tang S, Shi H, et al. Synjournal of FePO4·xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method[J]. Synjournal of FePO4·xH2O for fabricating 2014,40(2):2685-2690.
[10] Peng C L, Shen C, Zhang B, et al. Effect of solution concentration on FePO4·2H2O precursor and performance of LiFePO4[J]. Journal of Central South University, 2010,41(5):1668-1673.
[11] Okawa H, Yabuki J, Kawamura Y, et al. Synjournal of FePO4 cathode material for lithium ion batteries by asonochemical method[J]. Materials Research Bulletin, 2008,43(5):1203-1208.
[12] Srinivasan V, Newman J. Discharge model for the lithium iron-phosphate electrode[J]. Journal of the Electrochemical Society, 2004,151(10):A1517-A1529.
[13] 熊新宇, 熊天庆, 宋倩倩, 等. 金属表面处理磷化渣综合利用技术[J]. 冶金动力, 2015(2):43-45.
[14] 范洪强, 李淑英, 蔡子达. 利用磷化渣配制复合磷化液[J]. 化工环保, 2008,28(2):165-168.
[15] 马福波, 陈文兴, 田娟. 利用磷化废渣生产磷酸三钙技术[J]. 无机盐工业, 2015,47(9):60-61.
[16] 崔国星, 严赤美, 张启卫. 溶剂萃取法分离锌锰金属离子的实验研究[J]. 无机盐工业, 2008,40(9):20-23.
[17] Jiang D, Zhang X, Lu S, et al. Research on process of preparation and performance of iron phosphate as precusor of lithium iron phosphate[J]. Rare Metals, 2011,30(1):52-54.
[18] Fu W, Fang Z, Hong W, et al. Effects of Ce+Gd on the structural features and thermal stability of iron-boron-phosphate glasses[J]. Materials Chemistry & Physics, 2017,201:170-179.
[19] Mahboobi E, Yourdkhani A, Poursalehi R. Liquid phase deposition of iron phosphate thin films[J]. CrystEngComm, 2018,20(35):10.1039/C8CE00632F.
[20] Zhu Y M, Ruan Z W, Tang S Z, et al. Research status in preparation of FePO4:a review[J]. Ionics, 2014,20(11):1501-1510.
文章导航

/