分散介质对纳米二氧化硅分散体系流变性能的影响研究
收稿日期: 2020-03-24
网络出版日期: 2020-09-27
Research on effect of dispersion medium on rheological properties of nanometer SiO2′s dispersion system
Received date: 2020-03-24
Online published: 2020-09-27
测定了不同分散介质以及同一分散介质不同相对分子质量、不同温度下的纳米二氧化硅分散体系的流变性能并进行了比较,得出以下结论:随着分散介质相对分子质量的增加,分散体系的粘度增加,固液间氢键作用力减弱,分散体系所需临界剪切应力减小;当分散介质的相对分子质量提高到一定程度后,固液间氢键作用力更弱,加上分子链增长造成空间位阻效应,纳米二氧化硅难于以三维网状立体结构存在于分散介质中,不会出现先剪切变稀后剪切增稠的流变曲线。分散体系所处的温度越高,体系的粘度越低,剪切增稠所需临界剪切应力越大,剪切增稠效果越差,甚至不出现先剪切变稀再剪切增稠的流变曲线。因此选择合适的分散介质及分散温度对改善纳米二氧化硅分散体系的流变性能有积极作用。
徐素鹏 , 王红伟 , 郑安雄 . 分散介质对纳米二氧化硅分散体系流变性能的影响研究[J]. 无机盐工业, 2020 , 52(9) : 52 -56 . DOI: 10.11962/1006-4990.2020-0030
The rheological properties of nanometer SiO2′s dispersion system under the conditions of different dispersion me-diums, as well as the different relative molecular mass and temperature of one single dispersion medium were determined and compared.The results showed that with the increasing of the relative molecular mass,the dispersion system′s viscosity increa-sed,the hydrogen bonding between solid and liquid weakened and the critical shear stress needed by dispersion system dec-reased.When the relative molecular mass of dispersion medium increased to some extent,the hydrogen bonding between solid and liquid was weaker and space steric effect was caused by the growth of molecular chain.Then the nanometer SiO2 was not exis-tent with three-dimensional netted structure in dispersion medium,the rheological properties curves didn′t have shear thinn-ing first and then shear thickening.With the increasing of the dispersion medium′s temperature,the dispersion system′s viscosity decreased,the critical shear stress for shear thickening increased,the effect of the shear thickening became worse,and even the rheological properties curves didn′t have shear thinning first and then shear thickening.So selecting suitable dispersion medium and dispersion medium′s temperature can improve the rheological properties of nanometer SiO2′s dispersion system.
[1] | Barnes H A. Shear-thickening(dilatancy) in suspensions of nonag-gregating solid particles dispersed in newtonian liquids[J]. Journal of Rheology, 1989,33(2):329-366. |
[2] | Sun L L, Xiong D S, Xu C Y. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric[J]. Journal of Applied Polymer Science, 2013,129(4):1922-1928. |
[3] | Wu Q M, Ruan J M, Hung B Y, et al. Rheological behavior of fumed silica suspension in polyethylene glycol[J]. Journal of Central South University of Technology, 2006,13(1):1-5. |
[4] | Majumdar A. Optimal designing of soft body armour materials using shear thickening fluid[J]. Materials & Design, 2013,46:191-198. |
[5] | Majumdar A. Development of soft composite materials with impro-ved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid[J]. Materials & Design, 2014,54:295-300. |
[6] | Majumdar A, Butola B S, Srivastava A, et al. Improving the impact resistance of p-aramid fabrics by sequential impregnation with she-ar thickening fluid[J]. Fibers and Polymers, 2016,17(2):199-204. |
[7] | Decker M J, Halbach C J, Nam C H, et al. Stab resistance of shear thickening fluid(STF) treated fabrics[J]. Composites Science and Technology, 2007,67(3/4):565-578. |
[8] | 陆振乾, 吴利伟, 孙宝忠, 等. 经编间隔织物增强柔性复合材料冲击性能[J]. 复合材料学报, 2014,31(5):1306-1311. |
[9] | Budden G. 防护与舒适并存的新型抗机械冲击防护服[J]. 纺织导报, 2006(9):62-63. |
[10] | Palmer R M, Green P C,. Energy absorbing material:US,7381460P]. 2008-06-03. |
[11] | Zhang X Z, Li W H, Gong X L. The rheology of shear thickening fluid(STF) and the dynamic performance of an STF filled damp-er[J]. Smart Materials and Structures, 2008,17(3):035027. |
[12] | Zhou H, Yan L X. Shear thickening fluid-based energy free damper:design anddynamic characteristics[J]. Journal of Intelligent Ma-terial Systems and Structures, 2016,27(2):208-220. |
[13] | 周鸿, 郭朝阳, 宗路航, 等. 剪切增稠液及阻尼器性能研究[J]. 振动与冲击, 2013,32(18):15-20. |
[14] | Yeh F Y, Chang K C, Chen T W, et al. The dynamic performance of a shear thickening fluid viscous damper[J]. Journal of the Chinese Institute of Engineers, 2014,37(8):983-994. |
[15] | Lee Y S, Wetzel E D. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fl-uid[J]. Journal of Materials Science, 2003,38(13):2825-2833. |
[16] | Petel O E, Ouellet S, Loiseau J, et al. The effect of particle strength on the ballistic resistance of shear thickening fluids[J]. Applied Physics Letters, 2013,102(6):064103. |
[17] | Raghavan S R, Khan S A. Shear-thickening response of fumed silica suspensions under steady and oscillatory shear[J]. Journal of Coll-oid and Interface Science, 1997,185:57-67. |
[18] | Shenoy S S, Wagner N J. Influence of medium viscosity and adsor-bed polymer on the reversible shear thickening transition in concen-trated colloidal dispersions[J]. Rheol Acta, 2005,44(4):360-371. |
[19] | Wetzel E D, Lee Y S. The effect of rheological parameters on the ba-llistic properties of shear thickening fluid(STF)-kevlar composit-es[C]∥AIP Conference Proceedings, 2004,712(1):288-293. |
[20] | Kang T J, Kim C Y, Hong K H. Rheological behavior of concentra-ted silica suspension and its application to soft armor[J]. Journal of Applied Polymer Science, 2012,124(2):1534-1541. |
[21] | Jiang W, Sun Y, Xu Y, et al. Shear Thickening behavior of polymet-hylmethacrylate particles suspensions in glycerine-water mixtur-es[J]. Rheologica Acta, 2010,49(11/12):1157-1163. |
[22] | Qin J. Study of a shear thickening fluid:the suspensions of mono-disperse polystyrene microspheres in polyethylene glycol[J]. Jour-nal of Dispersion Science and Technology, 2017,38(7):935-942. |
[23] | 沙晓菲, 俞科静, 钱坤. 不同分子量PEG对剪切增稠液体流变性能的影响[J]. 化工新型材料, 2013,41(5):100-102. |
[24] | 山磊, 田煜, 孟永钢, 等. 分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响[J]. 物理学报, 2015,64(6):382-389. |
[25] | 庄清平. 纳米SiO2与有机物分子的亲和性和分散性[J]. 中国粉体技术, 2003,9(6):36-41. |
/
〈 |
|
〉 |