多组分氯盐体系镁锂分离规律初探
收稿日期: 2019-02-21
网络出版日期: 2020-06-15
基金资助
国家自然科学基金(51774191);山西省煤基重点科技攻关项目(MC2014-06)
Preliminary study on separation of magnesium and lithium in multicomponent chloride salt system
Received date: 2019-02-21
Online published: 2020-06-15
以Na2CO3为沉淀剂,初步研究了多组分氯盐混合体系(0.6 mol MgCl2+1.1 mol LiCl+3.2 mol NaCl)中选择性沉镁的工艺规律。结果表明:在25~80 ℃,总C与总Mg物质的量比[n(CT)/n(MgT)]为 0.8~1.1时,25 ℃形成针状MgCO3·3H2O,40 ℃以上形成Mg5(CO3)4(OH)2·4H2O不规则片状团聚微球,其中40~50 ℃形成的片状物较为分散且粒径较小,导致固液分离困难。40 ℃时沉镁率最低。温度越高,Li2CO3越易形成,沉锂率越大。n(CT)/n(MgT)越大沉镁率和沉锂率越高。室温(25 ℃)、n(CT)/n(MgT)=1.0时,沉镁率达98%以上,且沉锂率<0.1%,镁锂分离效果最好。
刘香环 , 易美桂 , 向兰 . 多组分氯盐体系镁锂分离规律初探[J]. 无机盐工业, 2019 , 51(8) : 13 -16 . DOI: 10.11962/1006-4990.2018-0556
The process of selective precipitation of Mg2+ from multicomponent chloride salt mixed system(0.6 mol MgCl2+1.1 mol LiCl+3.2 mol NaCl) was preliminarily studied with Na2CO3 as precipitate agent.The results indicated that at 25~80 ℃ and the amount-of-substance ratio of total C and total Mg[n(CT)/n(MgT)] was 0.8~1.1,the MgCO3·3H2O needle-like particles formed at 25 ℃ and the irregular spherical agglomerates composed of sheet-like Mg5(CO3)4(OH)2·4H2O were obtained above 40 ℃.The precipitates formed at 40~50 ℃ were comparatively difficult to be separated by filtration due to the relative dispersion and the small particle sizes.The precipitation ratio of Mg2+ was the lowest at 40 ℃.The higher the temperature,the easier the formation of Li2CO3 and the higher the ratio of Li+ precipitation.The increase of n(CT)/n(MgT) promoted both the precipitation of Mg 2+ and Li+.At room temperature(25 ℃) and n(CT)/n(MgT)=1.0,the precipitation ratio of Mg 2+ was above 98% and the precipitation ratio of Li+ was less than 0.1%,the separation effect of Mg2+ and Li+ was the best.
[1] | 乜贞, 卜令忠, 王云生 , 等. 盐湖卤水资源锂镁分离的工艺技术[J]. 无机盐工业, 2013,45(5):1-4. |
[2] | 尹红军, 邓天龙, 李栋婵 . 盐湖卤水资源锂镁分离提取的研究进展[J]. 无机盐工业, 2009,41(5):1-4. |
[3] | 付烨, 钟辉 . 沉淀法分离高镁锂比盐湖卤水的研究现状[J]. 矿产综合利用, 2010(2):30-33. |
[4] | 李存增, 常华, 柳杰 , 等. 从吸附法盐湖卤水提锂溶液中去除钙、镁试验研究[J]. 湿法冶金, 2014(6):476-479. |
[5] | 向兰, 刘峰, 金永成 , 等. 试论我国西部盐湖镁资源的高度利用对策[J]. 盐科学与化工, 2002,31(4):24-27. |
[6] | Cheng W, Li Z B, Demopoulos G P . Effects of temperature on the preparation of magnesium carbonate hydrates by reaction of MgCl2 with NaCO3[J]. Chinese Journal of Chemical Engineering, 2009,17(4):661-666. |
[7] | 程文婷, 李志宝, 柯家骏 . MgCO3·3H2O晶体生长及晶形的影响因素[C] // 中国有色金属学会.2008年全国湿法冶金学术会议.赣州, 2008: 230-235. |
[8] | Kloprogge J T, Martens W N, Nothdurft L , et al. Low temperature synjournal and characterization of nesquehonite[J]. Journal of Ma-terials Science Letters, 2003,22(11):825-829. |
[9] | 付梦源, 程芳琴, 程文婷 , 等. 沉淀结晶法制备不同形貌的碳酸镁水合物[J]. 盐业与化工, 2015,44(12):24-29. |
[10] | Wang Y, Li Z, Demopoulos G P . Controlled precipitation of nespue-honite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3[J]. Journal of Crystal Growth, 2008,310(6):1220-1227. |
[11] | 邵平平, 李志宝, 密建国 . 碳酸镁水合物在283~363 K范围内的晶体组成及晶型[J]. 过程工程学报, 2009,9(3):520-525. |
[12] | Zhang Z, Zheng Y, Ni Y , et al. Temperature-and pH-dependent mo-rphology and FT-IR analysis of magnesium carbonate hydrates[J]. Journal of Physical Chemistry B, 2006,110(26):12969-12973. |
[13] | 杨晨 . 多晶相水合碳酸镁结晶生长过程调控研究[D]. 上海:华东理工大学, 2013. |
/
〈 |
|
〉 |