SERS基底Ag@Au的制备及其对氧氟沙星的检测
收稿日期: 2019-11-19
网络出版日期: 2020-05-21
基金资助
国家自然科学基金地区科学基金项目(31560466);广西高等学校高水平创新团队及卓越学者计划项目(桂教人[2014]7号);国家自然科学基金地区项目:功能化纳米复合材料hCEs SERS探针的构建及在血清与细胞中检测羧酸酯酶活性的应用研究(81860633);广西自然科学基金面上项目;微流控芯片-表面增强拉曼检测系统的构建及在单细胞分析中的应用(2016GXNSFAA380108);广西科技大学硕士研究生创新项目(GKYC201909)
Preparation of SERS substrate Ag@Au and its detection of ofloxacin
Received date: 2019-11-19
Online published: 2020-05-21
程昊 , 徐娅娟 , 李利军 , 黄文艺 , 卢浩 , 冯军 . SERS基底Ag@Au的制备及其对氧氟沙星的检测[J]. 无机盐工业, 2020 , 52(5) : 18 -21 . DOI: 10.11962/1006-4990.2019-0385
A bimetallic Ag@Au nanoparticle with uniform morphology,uniform particle size and good dispersibility was syn-thesized by seed-mediated growth method and used as a surface-enhanced Raman scattering(SERS) substrate for ofloxacin (OFLX) testing.Firstly,the main Raman peak of ofloxacin was assigned under the optimal experimental conditions,and the 1 416 cm -1 Raman characteristic peak was selected.Secondly,the characteristic peak intensity of 1 416 cm -1 was linearly fit-ted with the concentration of ofloxacin.The curve equation was Y=291.48X+3 156.8,r=0.989,and the detection limit reached 10 -10 mol/L.The method is simple in operation,high in sensitivity and good in reproducibility,and can provide a basis for SERS detection of ofloxacin antibiotic drugs.
[1] | Bhoir S I, Gaikwad P V, Parab L S , et al. RP-HPLC method develop-ment and validation for the simultaneous estimation of satranidazole and ofloxacin in pharmaceutical dosage form[J]. Journal of Chroma-tographic Science, 2011,49(1):84-87. |
[2] | Shervington L A, Abba M, Hussain B , et al. The simultaneous sepa-ration and determination of five quinolone antibotics using isocratic reversed-phase HPLC:Application to stability studies on an ofloxa-cin tablet formulation[J]. Journal of Pharmaceutical & Biomedical Analysis, 2005,39(3):769-775. |
[3] | Smet J D, Boussery K, Colpaert K , et al. Pharmacokinetics of fluoro-quinolones in critical care patients:A bio-analytical HPLC method for the simultaneous quantification of ofloxacin,ciprofloxacin and moxifloxacin in human plasma[J]. Journal of Chromatography B An-alytical Technologies in the Biomedical & Life Sciences, 2009,877(10):961-967. |
[4] | Chan K P, Chu K O, Lai W W K , et al. Determination of ofloxacin and moxifloxacin and their penetration in human aqueous and vitreous humor by using high-performance liquid chromatography fluores-cence detection[J]. Analytical Biochemistry, 2006,353(1):30-36. |
[5] | Yun S, Li J Z . Electrochemical sensor using glassy carbon electrode modified with acylpyrazolone multiwalled carbon nanotube composite film for determination of xanthine[J]. Journal of Solid State Electrochemistry, 2012,16(2):689-695. |
[6] | Xu Q, Yuan A J, Zhang R , et al. Application of electrochemical methods for pharmaceutical and drug analysis[J]. Current Pharmaceutical Analysis, 2009,5(2):144-155. |
[7] | Huang K J, Liu X, Xie W Z , et al. Voltammetric behavior of ofloxacin and its determination using a multi-walled carbon nanotubes-Nafion film coated electrode[J]. Microchimica Acta, 2008,162(1/2):227-233. |
[8] | Yang C, Xu Y, Hu C , et al. Voltammetric detection of ofloxacin in human urine at a Congo Red functionalized watersoluble carbon nanotube film electrode[J]. Electroanalysis, 2010,20(2):144-149. |
[9] | Yang L, Liu H L, Wang J , et al. Metastable state nanoparticleenhanced Raman spectroscopy for highly sensitive detection[J]. Che-mical Communications, 2011,47(12):3583-3585. |
[10] | Guo Z, Cheng Z, Li R , et al. Onestep detection of melamine in milk by hollow gold chip based on surfaceenhanced Raman scatter ing[J]. Talanta, 2014,122:80-84. |
[11] | Zhang L, Jin Y, Mao H , et al. Structureselective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin[J]. Biosensors & Bioelectronics, 2014,58(6):165-171. |
[12] | Moskovits Martin . Surfaceenhanced spectroscopy[J]. Reviews of Modern Physics, 1985,57(3):783-826. |
[13] | Tian Z Q, Ren B, Wu D Y . Surfaceenhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures[J]. Journal of Physical Chemistry B, 2002,106(37):9463-9483. |
[14] | Yang L, Qin X, Jiang X , et al. SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles[J]. Physical Chemistry Che-mical Physics, 2015,17(27):17809-17815. |
[15] | Liu H, Liu T, Zhang L , et al. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity[J]. Adv.Funct.Mater., 2015,25(34):5435-5443. |
[16] | Kumar Krishnan S, Estevez González M, Pérez R , et al. A general seed-mediated approach to the synjournal of AgM(M=Au,Pt,and Pd) coreshell nanoplates and their SERS properties[J]. RSC Adv., 2017,7(44):27170-27176. |
[17] | Siva K K, Rodrigo E, Rlores Ruiz F J . Seed-mediated growth of Ag@Au nanodisks with improved chemical stability and surface-enhanced Raman scattering[J]. ACS Moega, 2018,3(10):12600-12608. |
[18] | Shahjamali M M, Bosman M, Cao S , et al. Gold coating of silver nanoprisms[J]. Adv.Funct.Mater., 2012,22(4):849-854. |
[19] | Sommer C, Reil F, Krenn J R , et al. The impact of light scattering on the radiant flux of phosphor-converted high power white light-emi-tting diodes[J]. Journal of Lightwave Technology, 2011,29(15):2285-2291. |
[20] | Sun Y, Bi S Y, Song D Q , et al. Study on the interaction mechanism between DNA and the main active components in Scutellaria baic-alensis Georgi[J]. Sensors & Actuators B Chemical, 2008,129(2):799-810. |
[21] | Dasgupta A, Danveer S, Shreyash T , et al. Remote-excitation surface-enhanced Raman scattering with counter-propagating plasmons: Silver nanowire-nanoparticle system[J]. Journal of Nanophotonics, 2013,8(1).Doi: 10.117/1.JNP.8.083899. |
/
〈 |
|
〉 |