无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
催化材料

碳纸负载钴氧化物的制备及电催化析氧性能研究

  • 麦诗欣 ,
  • 程高 ,
  • 余林 ,
  • 孙明
展开
  • 广东工业大学轻工化工学院,广东广州 510006
麦诗欣(1993— ),女,在读硕士,研究方向为电催化析氧反应与纳米材料;E-mail:13602499934@163.com。

收稿日期: 2019-07-25

  网络出版日期: 2020-02-26

基金资助

国家自然科学基金(21576054);广东省科技计划项目(2016A010104017)

Preparation of cobalt oxides on carbon fiber paper and its application in electrocatalytic oxygen evolution reaction

  • Shixin Mai ,
  • Gao Cheng ,
  • Lin Yu ,
  • Ming Sun
Expand
  • School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou,510006,China

Received date: 2019-07-25

  Online published: 2020-02-26

摘要

高效且廉价的电催化析氧反应(OER)电极材料的制备对其在电化学能源转化和储存系统中的应用具有重要的研究意义。通过溶剂热法和不同气氛焙烧,分别制得碳纤维纸(碳纸)负载的两种钴氧化物(一氧化钴和四氧化三钴),并将其用作OER电极的催化剂。运用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和X射线光电子能谱(XPS)技术分别对两种材料的物相、形貌和表面价态进行了表征及分析。结果表明:在氮气气氛下焙烧得到一氧化钴纳米片,而在空气下焙烧得到四氧化三钴纳米片。通过线性扫描伏安法(LSV)、循环伏安曲线(CV)、电化学交流阻抗测试(EIS)和计时电位法对两种材料的电催化析氧性能进行了研究。结果表明:一氧化钴电极比四氧化三钴电极具有更优异的析氧反应催化活性和稳定性。在1 mol/L 氢氧化钾电解液中,一氧化钴和四氧化三钴电极在10 mA/cm 2电流密度下对应的电位分别为1.568 V和1.617 V。

本文引用格式

麦诗欣 , 程高 , 余林 , 孙明 . 碳纸负载钴氧化物的制备及电催化析氧性能研究[J]. 无机盐工业, 2020 , 52(1) : 87 -92 . DOI: 10.11962/1006-4990.2019-0121

Abstract

The design of electrocatalytic oxygen evolution reaction(OER) electrodes materials with high efficiency and low cost is of great significance to enhance the performance of electrochemical energy conversion and storage systems in large scale.Two kinds of cobalt oxides,such as CoO and Co3O4,on carbon fiber paper (CFP) were synthesized via solvothermal method and calcination in different atmosphere and applied them as OER electrodes.X-ray diffraction(XRD),field emission scanning electron microscope(FESEM) and X-ray photoelectron spectroscopy(XPS) were used to characterize and analyze the phases,morphology and surface valence of the as-prepared cobalt oxides samples.Results showed that CoO nanosheet was obtained by calcination in nitrogen atmosphere,while Co3O4 nanosheet was obtained in air atmosphere.Linear sweep voltammetry(LSV),cyclic voltammgrams(CV),electrochemical impedance spectroscopy(EIS) and chronopotentiometric measurements were used to investigate the as-prepared cobalt oxides samples for OER performance.Results indicated that CoO electrode exhibited better OER activity and stability compared to that of Co3O4 electrode.In 1 mol/L KOH electrolyte,CoO and Co3O4 electrodes require 1.568 V and 1.617 V at a current density of 10 mA/cm 2,respectively.

参考文献

[1] Tahir M, Pan L, Idrees F , et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage:a comprehensive review[J]. Nano Energy, 2017,37:136-157.
[2] Suen N T, Hung S F, Quan Q , et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017,46(2):337-365.
[3] Zhao Y, Sun B, Huang X , et al. Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution[J]. Journal of Materials Chemistry A, 2015,3(10):5402-5408.
[4] Kong X, Zhang C, Hwang S Y , et al. Free-standing holey Ni(OH)2 nanosheets with enhanced activity for water oxidation[J]. Small, 2017,13(26):1700334.
[5] Du J, Zou Z, Liu C , et al. Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction[J]. Nanoscale, 2018,10(11):5163-5170.
[6] Chen X, Liu B, Zhong C , et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display[J]. Advanced Energy Materials, 2017,7(18):1700779.
[7] Jiang Y Y, Lu Y Z, Lin J Y , et al. A hierarchical MoP nanoflake array supported on Ni foam:a bifunctional electrocatalyst for overall water splitting[J]. Small Methods, 2018,2(5):1700369.
[8] Zhang T, Wu M Y, Yan D Y , et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018,43:103-109.
[9] Jiang A, Nidamanuri N, Zhang C , et al. Ionic-liquid-assisted one-step synjournal of CoO nanosheets as electrocatalysts for oxygen evolution reaction[J]. ACS Omega, 2018,3(8):10092-10098.
[10] Yuan W, Zhao M, Yuan J , et al. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode[J]. Journal of Power Sources, 2016,319:159-167.
[11] Guo C, Zheng Y, Ran J , et al. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angewandte Chemie, 2017,56:1-6.
[12] Zhang Y, Ouyang B, Xu J , et al. Rapid synjournal of cobalt nitride nanowires:highly efficient and low-cost catalysts for oxygen evolution[J]. Angewandte Chemie, 2016,55(30):8670-8674.
[13] Xia H, Peng Z, Cuncal L V , et al. Self-supported porous cobalt oxide nanowires with enhanced electrocatalytic performance toward oxygen evolution reaction[J]. Journal of Chemical Sciences, 2016,128(12):1879-1885.
[14] Wu Z, Sun L, Yang M , et al. Facile synjournal and excellent electrochemical performance of reduced graphene oxide-Co3O4 yolk-shell nanocages as a catalyst for oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2016,4:13534-13542.
[15] Babar P T, Lokhande A C, Pawar B S , et al. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction[J]. Applied Surface Science, 2018,427:253-259.
[16] Tong Y, Chen P, Zhou T , et al. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution:cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene[J]. Angewandte Chemie, 2017,56(25):7121-7125.
[17] Andre R S, Pereira J C, Mercante L A , et al. ZnO-Co3O4 heterostrcture electrospun nanofibers modified with poly(sodium 4-styrenesulfonate):evaluation of humidity sensing properties[J]. Journal of Alloys and Compounds, 2018,767:1022-1029.
[18] Xie S, Liu Y, Deng J , et al. Mesoporous CoO-supported palladium nanocatalysts with high performance for o-xylene combustion[J]. Catalysis Science & Technology, 2018,8(3):806-816.
[19] Ling T, Yan D Y, Jiao Y , et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis[J]. Nature Communications, 2016,7:12876.
[20] Su H Y, Gorlin Y, Man I C , et al. Identifying active surface phases for metal oxide electrocatalysts:a study of manganese oxide bifunctional catalysts for oxygen reduction and water oxidation catalysis[J]. Physical Chemistry Chemical Physics, 2012,14(40):14010-14022.
[21] Wang H Y, Hung S F, Chen H Y , et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. Journal of the American Chemical Society, 2016,138(1):36-39.
[22] Tung C W, Hsu Y Y, Shen Y P , et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution[J]. Nature Communications, 2015,6:8106.
文章导航

/