Li2MnO3复合LiNi0.8Co0.1Mn0.1O2材料制备及电化学性能研究
收稿日期: 2019-07-21
网络出版日期: 2020-02-26
Study on Synthesis and electrochemical performance of Li2MnO3-LiNi0.8Co0.1Mn0.1O2 composite cathodes materials
Received date: 2019-07-21
Online published: 2020-02-26
通过采用共沉淀法制备了Ni0.8Co0.1Mn0.1(OH)2前驱体,利用固相法研磨混合碳酸锰和碳酸锂,在氧气氛围下煅烧制备得到了Li2MnO3-LiNi0.8Co0.1Mn0.1O2复合材料,通过利用X射线衍射(XRD)、场发射扫描电镜(FESEM)和透射电镜(TEM)表征了所制备材料的结构、成分和形貌等。通过恒流充放电、交流阻抗等方法对材料的电化学性能进行测试。结果表明,与未改性材料进行对比,3%(质量分数)Li2MnO3复合改性材料0.5C下首次放电容量为183 mA·h/g,经过120次充放电循环,容量保持率为93.9%;同时,在高倍率下复合改性材料放电容量也得到提高。因此,采用固相法煅烧复合Li2MnO3-LiNi0.8Co0.1Mn0.1O2材料,可以制备出电化学性能优异的正极材料。
熊凡 , 王同振 , 高强 , 程凤如 , 罗惜情 . Li2MnO3复合LiNi0.8Co0.1Mn0.1O2材料制备及电化学性能研究[J]. 无机盐工业, 2020 , 52(1) : 68 -72 . DOI: 10.11962/1006-4990.2019-0108
A co-precipitation route was utilized to synthesize the precursor of Ni0.8Co0.1Mn0.1(OH)2,which was mixed with MnCO3 and Li2CO3 afterwards. After calcination in the oxygen atmosphere,Li2MnO3-LiNi0.8Co0.1Mn0.1O2 composite material was obtained.The structure,composition and morphology of the prepared materials were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM),respectively.The electrochemical performance of the material was tested by galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy.Results showed that the 3%(mass fraction) Li2MnO3 composite material exhibit higher initial discharge capability(183 mA·h/g at 0.5C),more stable cycle performance(with capacity retention of 93.9% after 120 cycles)and better rate performance,compared with unmodified cathode.Thus,this strategy is extremely promising for the preparation of LiNi0.8Co0.1Mn0.1O2 electrode materials with enhanced electrochemical performances.
Key words: Li2MnO3; co-precipitation; nickel-rich material
[1] | 郭红霞, 乔月纯, 穆培振 . 锂离子电池正极材料研究与应用进展[J]. 无机盐工业, 2016,48(3):5-8. |
[2] | Manthiram A, Knight J C, Myung S T , et al. Nickel-rich and lithiumrich layered oxide cathodes:progress and perspectives[J]. Advanced Energy Materials, 2016,6(1):1-23. |
[3] | Noh H J, Youn S, Yoon C S , et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3,0.5,0.6,0.7,0.8 and 0.85)cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013,233:121-130. |
[4] | Xiong X, Wang Z, Guo H , et al. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 ℃[J]. Journal of Materials Chemistry A, 2013,1(4):1284-1288. |
[5] | Thackeray M M, Kang S H, Johnson C S , et al. Li2MnO3-stabilized LiMO2(M=Mn,Ni,Co)electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007,17(30):3112-3125. |
[6] | Johnson C S, Korte S D, Vaughey J T , et al. Structural and electrochemical analysis of layered compounds from Li2MnO3[J]. Journal of Power Sources, 1999,81/82:491-495. |
[7] | Song B H, Li W D, Yan P F , et al. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries[J]. Journal of Power Sources, 2016,325:620-629. |
[8] | Kalyani P, Chitra S, Mohan T , et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode[J]. Journal of Power Sources, 1999,80(1/2):103-106. |
[9] | Cho Y, Oh P, Cho J . A new type of protective surface layer for highcapacity Ni-based cathode materials:nanoscaled surface pillaring layer[J]. Nano Letters, 2013,13(3):1145-1152. |
/
〈 |
|
〉 |