磁场对Ni/Al2O3催化剂结构及加氢性能的影响
收稿日期: 2019-08-19
网络出版日期: 2020-02-26
Effect of magnetic field on structure and hydrogenation performance of Ni/ Al2O3 catalyst
Received date: 2019-08-19
Online published: 2020-02-26
采用共沉淀法制备了Ni/Al2O3加氢催化剂,在制备过程中引入交流电磁场对催化剂做强化制备,通过BET、SEM、XRD和TPR等方法对催化剂做表征,并将该催化剂应用于脂肪酸加氢反应中,考察了磁场强度对催化剂结构及加氢性能的影响。结果表明,制备过程中引入电磁场能够有效降低催化剂颗粒的团聚,增大催化剂的比表面积和平均孔径,提高催化剂的脂肪酸加氢活性。随着磁场强度的增强催化剂还原温度逐渐升高,结构稳定性增强,有效延长了催化剂的使用寿命。
关键词: Ni/Al2O3加氢催化剂; 磁场; 脂肪酸加氢
刘伟 , 陈永生 , 孙春晖 , 许岩 , 张景成 , 孙彦民 . 磁场对Ni/Al2O3催化剂结构及加氢性能的影响[J]. 无机盐工业, 2020 , 52(2) : 97 -100 . DOI: 10.11962/1006-4990.2019-0140
Ni/ Al2O3 hydrogenation catalyst was prepared by the co-precipitation method at different magnetic field intensity.The catalyst was applied to the hydrogenation of fatty acids and characterized by BET,SEM,XRD and TPR etc..The effects of magnetic field on catalyst structure and hydrogenation performance were investigated.The results showed that the magnetic field can effectively reduce the agglomeration between catalyst particles,increased the specific surface area and average pore size of the catalyst,and improved the activity of fatty acids hydrogenation.With the increase of the magnetic field intensity,the reduction temperature of the catalyst increased gradually,and the structural stability enhanced,which can effec-tively reduce the loss of the active component during the use and extend the service life of the catalyst.
[1] | 张玉军, 陈杰瑢 . 油脂氢化化学与工艺学[M]. 北京: 化学工业出版社, 2004: 73-102. |
[2] | 闵恩泽, 李成岳 . 绿色石化技术的科学与工程基础[M]. 北京: 中国石化出版社, 2002: 250-271. |
[3] | 林志峰, 胡日茗, 周晓龙 . 镍基催化剂的研究进展[J]. 化工学报, 2017,68(s1):26-36. |
[4] | 刘伟, 于海斌, 陈永生 , 等. 超声波技术制备高活性镍/氧化铝油脂加氢催化剂[J]. 无机盐工业, 2017,49(3):81-82. |
[5] | Wakasa M, Suda S, Hayashi H , et al. Magnetic field effect on the photocatalytic reaction with ultrafine TiO2 particles[J]. Phys.Chem.B, 2004,108:11882-11885. |
[6] | 张雯, 王绪绪, 林华香 . 磁场对光催化反应羟基自由基生成速率的影响[J]. 化学学报, 2005,63(18):1765-1768. |
[7] | 王山杉, 李琳, 李冰 . 磁场对酶学效应影响的研究进展[J]. 现代生物医学进展, 2006,6(10):111-114. |
[8] | Blank M, Soo L . Frequency dependence of Na,K-ATPase function in magnetic fields[J]. Bioelectrochemistry Bioenergetics, 1997,42(2):231-234 . |
[9] | Li W, Zong B N, Li X F . Interphase mass transfer in G-L-S magnet-ically stabilized bed with amorphous alloy SRNA-4 catalyst[J]. Ch-in.J.Chem.Eng., 2006,14:734-739 . |
[10] | 宗保宁, 慕旭宏, 孟祥垄 等. 非晶态合金催化剂和磁稳定床反应工艺的创新与集成[J]. 石油学报, 2006,22(2):1-6. |
[11] | Zhang H, Qi R, David G , et al. Synjournal and characterization of a novel nano-scale magnetic solid base catalyst involvinga layered double hydroxide supported on a ferrite core[J]. Solid State Chem., 2004,177:772-780. |
[12] | Yermakov A Y, Feduschak T A, Uimin M A , et al. Reactivity of nanocrystalline copper oxide and its modification under magnetic field[J]. Solid State Ionics, 2004,172:317-323. |
[13] | 李波, 邵玲玲 . 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业, 2008,40(2):54-57. |
[14] | 廖巧丽, 梁珍成, 戴光 , 等. 制备镍催化剂时外加磁场对萁结构和性能的影响[J]. 催化学报, 1995,16(6):437-440. |
/
〈 |
|
〉 |