无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

硒掺杂改性新能源汽车锂电池正极材料的结构与电化学性能

  • 李通 ,
  • 史云斌 ,
  • 刘庆彬 ,
  • 何爽
展开
  • 1. 驻马店职业技术学院,河南驻马店 463000
    2. 杭州职业技术学院
    3. 浙江大学
李通(1982— ),男,硕士,讲师,研究方向为汽车新能源;E-mail:111434299@qq.com。

收稿日期: 2019-08-27

  网络出版日期: 2020-02-26

基金资助

国家自然科学基金(51472220)

Structure and electrochemical properties of cathode materials for new energy automotive lithium batteries doped and modified by Se

  • Tong Li ,
  • Yunbin Shi ,
  • Qingbin Liu ,
  • Shuang He
Expand
  • 1. Zhumadian Vocational and Technical College,Zhumadian 463000,China
    2. Hangzhou Vocational and Technical College
    3. Zhejiang University

Received date: 2019-08-27

  Online published: 2020-02-26

摘要

为了开发出具有能量密度大、循环性能优越等特性的高能量密度电池材料,研究了硒掺杂量对富锂锰基正极材料显微组织和电化学性能的影响。结果表明,硒掺杂量增加有助于减小正极材料中颗粒粒径,但是硒掺杂量过高(x=0.21)会出现严重颗粒团聚现象,锂电池正极材料中适宜的硒掺杂量为x=0.14,此时正极材料可以获得粒径细小、均匀的颗粒;x=0.14的正极材料由于具有最佳的抑制氧损失的作用而具有最高的库伦效率(77.1%);当倍率为0.1C~10C时,正极材料的放电比容量会随着硒含量升高而先增大后减小,在x=0.14时取得最大值,即x=0.14的正极材料的倍率性能最优;x=0.14的正极材料的循环性能明显高于x=0的正极材料。

本文引用格式

李通 , 史云斌 , 刘庆彬 , 何爽 . 硒掺杂改性新能源汽车锂电池正极材料的结构与电化学性能[J]. 无机盐工业, 2020 , 52(2) : 17 -22 . DOI: 10.11962/1006-4990.2019-0158

Abstract

In order to develop high energy density battery materials with high energy density and superior cycle performance,the effect of Se doping amount on the microstructure and electrochemical properties of lithium-rich manganese based cathode materials was studied.Results showed that the increase of Se doping amount was helpful to reduce the particle size in the positive material,but if the Se doping amount is too high(x=0.21),there will be serious particle aggregation;the appropriate Se doping amount in the cathode material of lithium battery was x=0.14,at this time,the cathode material with fine and uni-form particles can be obtained; the positive material with x=0.14 had the highest Coulomb efficiency due to the best inhibition of oxygen loss(77.1%);when the ratio was at 0.1C~10C,the discharge specific capacity of the positive material increased first and then decreased with the increase of Se doping amount,and the maximum value was obtained when x=0.14,it showed that ratio performance of the positive material with x=0.14 was the best;the cycle performance of the positive material with x=0.14 was significantly higher than that of the positive material with x=0.4.

参考文献

[1] 张斐然 . 电动汽车电池储能技术的研究[J]. 技术与市场, 2019,26(2):60-61.
[2] 谢元, 李俊华, 王佳 , 等. 锂离子电池三元正极材料的研究进展[J]. 无机盐工业, 2018,50(7):18-22.
[3] 胡涵 . 新能源汽车技术的发展趋势[J]. 时代汽车, 2018(7):87-88.
[4] Han S, Latchoumanin O, Wu G , et al. Recent clinical trials utilizing chimeric antigen receptor T cells therapies against solid tumors[J]. Cancer Letters, 2017,390:188-200.
[5] Zhang L, Luo F, Wang J H , et al. Effect of calcination temperature on the structure and electrochemical performance of LiNi0.4Co0.2Mn0.4O2[J]. Advanced Materials Research, 2014,912/913/914:18-22.
[6] 范宏 . 不同Ti 4+含量掺杂Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备和电化学性能 [J]. 无机盐工业, 2017,49(7):69-73.
[7] Wang X, Cheng K, Zhang J , et al. Effect of carbon content and calc-ination temperature on the electrochemical performance of lithium iron phosphate/carbon composites as cathode materials for lithium-ion batteries[J]. Advanced Powder Technology, 2013,24(3):593-598.
[8] Zhang Z, Liu X Q, Ma S S , et al. Preparation of Li2FeSiO4/C compo-site cathode materials for lithium ion batteries by carbothermal reduction method[J]. Advanced Materials Research, 2013,724/725:838-843.
[9] Zhang S, Deng C, Yang S . Preparation of nano-Li2FeSiO4 as cathode de material for lithium-ion batteries[J]. electrochemical and solid-state letters, 2009,12(7):466-472.
[10] Cho Y H, Jang D, Yoon J , et al. Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J] Journal of Alloys and Compounds, 2013,562:219-223.
[11] Fleischmann S, Mancini M, Axmann P , et al. Insights into the imp-act of impurities and non-stoichiometric effects on the electrochemi-cal performance of Li2MnSiO4[J]. Chem.Sus.Chem., 2016,9(20):2982-2993.
[12] Hu G, Zhang M, Wu L , et al. Effects of Li2SiO3 coating on the perfor-mance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batte-ries[J]. Journal of Alloys and Compounds, 2017,690:589-597.
[13] Chen Z, Wang Z, Kim G T , et al. Enhancing the electrochemical performance of LiNi0.4Co0.2Mn0.4O2 by V2O5/LiV3O8 coating[J]. ACS Applied Materials & Interfaces, 2019,30(11):491-502.
[14] Saracibar A, Wang Z, Carroll K J , et al. New insights into the elec-trochemical performance of Li2MnSiO4:Effect of cationic substitut-ions[J]. Journal of Materials Chemistry A, 2015,3(11):6004-6011.
[15] Cao K J, Wang L, Li L C , et al. Effects of Al2O3 coating on the struc-tural and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material[J]. Applied Mechanics and Materials, 2013,320:235-240.
[16] Luo W, Zheng B . Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by double-layer coating with graphene oxide and V2O5 for lithium-ion batteries[J] Applied Surface Science, 2017,404:310-317.
[17] Lou X, Zhang Y . Synjournal of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteri es[J]. Journal of Materials Chemistry, 2011,21(12):4156-4158.
[18] Yang X Q, Tang Z F, Wang H Y , et al. Improving the electrochemi-cal performance of LiNi0.5Co0.2Mn0.3O2 by double-layer coating with Li2TiO3 for lithium-ion batteries[J]. Ionics, 2016,22(11):1-4.
[19] Qing R P, Shi J L, Zhai Y B , et al. Synjournal and electrochemical properties of a high capacity Li-rich cathode material in molten KCl-Na2CO3 flux[J]. Electrochimica Acta, 2016,196:749-755.
文章导航

/