Environment·Health·Safety

Study on removal of salts from MVR condensate wastewater in the hydrometallurgical industry by ion exchange method

  • Weifeng ZHOU ,
  • Yongzhi CHI ,
  • Kaixiong LI ,
  • Sufeng TIAN ,
  • Muzhi LIU
Expand
  • 1. Tianjin Key Laboratory of Water Quality Science and Technology,School of Environmental and Municipal Engineering,Tianjin Chengjian University,Tianjin 300384,China
    2. International Joint Research Centre for Infrastructure Protection and Environmental Green Biotechnology,Tianjin Chengjian University
    3. Tianjin Tianyi Alto Technology Co.,Ltd.

Received date: 2021-06-09

  Online published: 2022-04-18

Abstract

With the rapid development of the hydrometallurgy industry,the issue of zero discharge of industrial wastewater from its industrial production process has increasingly become a hot topic of concern in the industry.The effect of pretreatments times,loading height,operating flow rate and temperature on the working volume exchange capacity was investigated in a comparative test using two mixed beds,DDC600/DDA500 and 001×7MB/201×7MB,for the removal of salts from NaCl and Na2SO4 condensate wastewater generated by MVR.The results showed that the mixed bed was most effective in removing salts and the effluent could meet the reuse requirements at a pretreatment frequency of 3 times,a mixed bed height of 0.225 m,an operating flow rate of 20 m/h and a temperature of 20 °C.Thomas adsorption model was used to fit the Na+ dynamic adsorption pro-cess,and the correlation coefficient R2 was ranged from 0.965 4 to 0.981 0,so there was a high fitting effect,and the relative deviations between the calculated theoretical and actual adsorption amounts were ranged from 3.97% to 6.89%.The MVR condensate wastewater could be reused after treatment,providing a useful reference for achieving a true convergence to zero discharge.

Cite this article

Weifeng ZHOU , Yongzhi CHI , Kaixiong LI , Sufeng TIAN , Muzhi LIU . Study on removal of salts from MVR condensate wastewater in the hydrometallurgical industry by ion exchange method[J]. Inorganic Chemicals Industry, 2022 , 54(4) : 152 -158 . DOI: 10.19964/j.issn.1006-4990.2021-0377

References

[1] 黄祥浩. 湿法冶金提取废弃电脑线路板中金的研究[D]. 武汉:武汉科技大学, 2019.
[2] 何健俊. MVR处理高浓度废水产生的冷凝水水质研究[J]. 低碳世界, 2017(3):30-31.
[3] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1):65-73.
[4] 王霄. 电厂给水处理中不同除盐工艺研究、经济性比较与针对不同水质的方案设计[D]. 青岛:青岛科技大学, 2015.
[5] 程浩, 陈亚中, 崔鹏. A222型阴离子交换树脂脱除HPPH+体系中的SO42-、NO3-[J]. 化工进展, 2016, 35(S1):316-320.
[6] SARBATLY R, CHIAM C K. Evaluation of geothermal energy in desalination by vacuum membrane distillation[J]. Applied Energy, 2013, 112:737-746.
[7] 李长海, 党小建, 张雅潇. 电渗析技术及其应用[J]. 电力科技与环保, 2012, 28(4):27-30.
[8] STRATHMANN H. Electrodialysis,a mature technology with a multitude of new applications[J]. Desalination, 2010, 264:268-288.
[9] XU P, DREWES J E, KIM T U, et al. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications[J]. Journal of Membrane Science, 2005, 279(1):165-175.
[10] NGHIEM L D, SCHÄFER A I. Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications[J]. Desalination, 2005, 187(1):303-312.
[11] 李宏鹏. 基于离子交换的低盐废水处理技术研究[D]. 济南:济南大学, 2020.
[12] 徐勇, 陈青柏, 王建友. 离子交换水软化技术研究与应用进展[J]. 化工进展, 2020, 39(S2):319-328.
[13] 陈仁. 大孔阴离子交换树脂去除溴酸盐的研究[D]. 长沙:湖南大学, 2015.
[14] 李恺雄, 池勇志, 付翠莲, 等. 湿法冶金MVR废水中溶解性有机溶剂和萃取剂的去除[J]. 工业水处理, 2021, 41(2):33-37.
[15] YUAN C Y, SUN Y Z, YANG Y, et al. Performance and modeling of bromide dynamic adsorption onto D301 anion exchange resin[J]. The Chinese Journal of Process Engineering, 2020, 20(6):655-666
[16] 吴赵敏, 杨林, 王辛龙, 等. 动态离子交换法处理电子行业蚀刻含铝废酸工艺研究[J]. 无机盐工业, 2021, 53(2):61-65,70.
[17] 庄海波, 杨林, 邓强, 等. 离子交换法脱除磷酸中锰离子的动态吸附研究[J]. 无机盐工业, 2021, 53(1):18-23.
[18] 王璐, 冯京京, 陶敏莉. 季铵离子化腈纶纤维对染料的动态吸附性能[J]. 化学工业与工程, 2020, 37(2):73-79.
[19] GB/T 50109—2014 工业用水软化除盐设计规范[S].
[20] 张拿慧. 201×7强碱性阴离子交换树脂吸附浓海水中溴的应用基础研究[D]. 杭州:浙江工业大学, 2009.
Outlines

/