无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

氯化钙熔盐中电解-刻蚀制备碳化钛衍生碳研究

  • 彭爽 ,
  • 陈朝轶 ,
  • 王仕愈 ,
  • 白杨 ,
  • 李天培 ,
  • 顾炜
展开
  • 1.贵州大学材料与冶金学院,贵州 贵阳 550025
    2.贵州省冶金工程与过程节能重点实验室,贵州 贵阳 550025
彭爽(2002— ),男,主要研究方向为有色金属冶金;E-mail:1904127866@qq.com
陈朝轶,教授;E-mail:ccy197715@126.com

收稿日期: 2022-07-07

  网络出版日期: 2023-03-17

基金资助

国家自然科学基金(52164017);国家自然科学基金(52074096);国家自然科学基金(U1812402);贵大SRT基金资助项目[(2021)002号]

Study on preparation of titanium carbide derived carbon by electrolysis-etching in CaCl2 molten salt

  • PENG Shuang ,
  • CHEN Chaoyi ,
  • WANG Shiyu ,
  • BAI Yang ,
  • LI Tianpei ,
  • GU Wei
Expand
  • 1. School of Materials and Metallurgy,Guizhou University,Guiyang 550025,China
    2. Guizhou Key Laboratory of;Metallurgical Engineering and Process Energy Conservation,Guiyang 550025,China

Received date: 2022-07-07

  Online published: 2023-03-17

摘要

在氯化钙熔盐中首先通过电还原高钛渣/碳制备碳化钛,对碳化钛进行电化学刻蚀得到碳化钛衍生碳(TiC-CDC)。研究了熔盐温度对碳化钛产物组成和结构的影响规律,获得制备形貌结构良好的碳化钛前驱体的条件,以便下一步电化学刻蚀。研究结果表明:熔盐温度是重要的影响因素,在较低的温度下反应速率较慢,温度过高则会造成产物烧蚀现象和能源浪费,在950 ℃下得到的产物形貌结构较好。对950 ℃下制备的碳化钛电化学刻蚀18 h,得到无定型碳和有序石墨带结构共存的碳化钛衍生碳,其孔结构主要为微孔,比表面积为327.88 m2/g,证明通过熔盐电还原-刻蚀能够制备出不同结构的碳化物衍生碳。与氯化法相比,该方法更环保,但是刻蚀时间较长,刻蚀效率还有待提高。

本文引用格式

彭爽 , 陈朝轶 , 王仕愈 , 白杨 , 李天培 , 顾炜 . 氯化钙熔盐中电解-刻蚀制备碳化钛衍生碳研究[J]. 无机盐工业, 2023 , 55(3) : 78 -83 . DOI: 10.19964/j.issn.1006-4990.2022-0278

Abstract

Titanium carbide(TiC) was firstly prepared by electroreduction of high titanium slag/C in CaCl2 molten salt,and the TiC was electrochemically etched to obtain titanium carbide-derived carbon(TiC-CDC).The influence law of molten salt temperature on the composition and structure of TiC products was investigated to obtain the conditions for the preparation of TiC precursors with good morphology and structure for the next step of electrochemical etching.The research results showed that the molten salt temperature was an important influencing factor.The reaction rate was slow at lower temperature,while high temperature would cause product ablation and energy waste,and the products obtained at 950 ℃ had better morphological structure.The TiC prepared at 950 ℃ was electrochemically etched for 18 h,and the TiC-CDC with the coexistence of amorphous carbon and ordered graphite band structure was obtained.The pore structure of the product was mainly microporous with a specific surface area of 327.88 m2/g,which proved that the carbide-derived carbon with different structures could be prepared by molten salt electroreduction-etching.It was more environmentally friendly than the chlorination method,but the etching time was longer and the etching efficiency was needed to be improved.

参考文献

1 PANG Zhongya, LI Guangshi, XIONG Xiaolu,et al.Molten salt synthesis of porous carbon and its application in supercapacitors:A review[J].Journal of Energy Chemistry202161:622-640.
2 唐金琼,孔勇,沈晓冬.碳化物衍生碳的制备及其应用研究进展[J].化工进展202241(2):791-802.
  TANG Jinqiong, KONG Yong, SHEN Xiaodong.Advances in the synthesis and application of the carbide-derived carbons[J].Chemical Industry and Engineering Progress202241(2):791-802.
3 王红妍,王宝冬,李俊华,等.碳化物衍生碳及其在吸附领域中的应用研究进展[J].化工进展201837(2):637-643.
  WANG Hongyan, WANG Baodong, LI Junhua,et al.Research progress of carbide-derived carbon and its application in adsorption[J].Chemical Industry and Engineering Progress201837(2):637-643.
4 DASH R, CHMIOLA J, YUSHIN G,et al.Titanium carbide derived nanoporous carbon for energy-related applications[J].Carbon200644(12):2489-2497.
5 NAHEED L, KOPPEL M, PAALO M,et al.Hydrogen adsorption properties of carbide-derived carbons at ambient temperature and high pressure[J].International Journal of Hydrogen Energy202146(29):15761-15772.
6 罗清威.不同热处理气氛下制备CDC涂层[J].云南大学学报:自然科学版202042(5):936-940.
  LUO Qingwei.Preparation of CDC coatingsunder different heat treatment atmospheres[J].Journal of Yunnan University:Natural Sciences Edition202042(5):936-940.
7 LILLOJA J, KIBENA-P?LDSEPP E, SARAPUU A,et al.Transition metal and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion-exchange mem-cells[J].ACS catalysis202111(4):1920-1931.
8 PANG Zhongya, LI Guangshi, ZOU Xingli,et al.An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon for high-performance supercapacitors[J].Journal of Energy Chemistry202156:512-521.
9 MALMBERG S, ARULEPP M, SAVEST N,et al.Directly electrospun electrodes for electrical double-layer capacitors from carbide-derived carbon[J].Journal of Electrostatics2020,103.Doi:10.1016/j.elstat.2019.103396.
10 LI Tao, BAI Xue, GULZAR U,et al.Facile synthesis of highly graphitized carbon via reaction of CaC2 with sulfur and its application for lithium/sodium-ion batteries[J].ACS Omega20194(5):8312-8317.
11 BADAMI D V.X-Ray studies of graphite formed by decomposing silicon carbide[J].Carbon19653(1):53-57.
12 张静.HCl辅助Cl2刻蚀SiC和WC制备碳化物衍生碳的工艺及机理[D].南昌:南昌大学,2016.
  ZHANG Jing.Preparation technology and mechanism of carbide-derived carbon by HCl-assisted Cl2 etching SiC and WC[D].Nanchang:Nanchang University,2016.
13 SCHWANDT C.Molten salts chemistry and technology.herausgegeben von marcelle gaune-escard und Geir?Martin haarberg[J].Angewandte Chemie2015127(1):36.
14 LIU Wei, LIU Guolong, KOU Qian,et al.Novel process for producing hierarchical carbide derived carbon monolith and low carbon ferromanganese from high carbon ferromanganese[J].RSC Advances20177(54):33875-33882.
15 PANG Zhongya, ZOU Xingli, TANG Wei,et al.Electrosynthesis of Ti3AlC2-derived porous carbon in molten salt[J].JOM202072(11):3887-3894.
16 LIU Wei, LIU Guolong, KOU Qian,et al.A simple method for preparing 3D hierarchical carbide derived carbon by single step molten salts electrolysis[J].Fullerenes,Nanotubes and Carbon Nanostructures201826(6):325-329.
17 PANG Zhongya, ZOU Xingli, ZHENG Kai,et al.Sustainable synthesis of Cr7C3,Cr2AlC,and their derived porous carbons in molten salts[J].ACS Sustainable Chemistry & Engineering20186(12):16607-16615.
18 ZHENG Kai, ZOU Xingli, XIE Xueliang,et al.Electrosynthesis of SiC derived porous carbon nanospheres for supercapacitors[J].Materials Letters2018216:265-268.
19 CHEN Yunfei, WANG Mingyong, LV Aijing,et al.Green preparation of vanadium carbide through one-step molten salt electrolys-is[J].Ceramics International202147(20):28203-28209.
20 郎晓川,谢宏伟,翟玉春,等.熔盐电解法制备TiC粉末的研究[J].稀有金属与硬质合金201341(5):1-4,24.
  LANG Xiaochuan, XIE Hongwei, ZHAI Yuchun,et al.Research on preparation of TiC powders by molten salt electrolysis[J].Rare Metals and Cemented Carbides201341(5):1-4,24.
21 WAN Chaopin.Molten salt electrolytic fabrication of TiC-CDC and its applications for supercapacitor[J].Journal of Materials Science & Technology201733(8):788-792.
22 XU Jiang, ZHANG Ruijun, CHEN Peng.Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides[J].Carbon201364:444-455.
23 盖家萱,陈朝轶,李军旗,等.熔盐电脱氧含钛废渣制备金属钛[J].中南大学学报:自然科学版202152(4):1076-1082.
  GAI Jiaxuan, CHEN Chaoyi, LI Junqi,et al.Preparation metal titanium from molten salt electrodeoxidized titanium-containing waste residue[J].Journal of Central South University:Science and Technology202152(4):1076-1082.
24 WANG Bo, CHEN Chaoyi, LI Junqi,et al.Production of Fe–Ti alloys from mixed slag containing titanium and Fe2O3 via direct electrochemical reduction in molten calcium chloride[J].Metals202010(12) .Doi:10.3390/met10121611.
25 GORDO E, CHEN G Z, FRAY D J.Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts[J].Electrochimica Acta200449(13):2195-2208.
26 陈朝轶,鲁雄刚,李重和,等.三相界面反应机制在SOM法制备金属钽中的应用[J].中国有色金属学报200919(3):583-588.
  CHEN Chaoyi, LU Xionggang, LI Chonghe,et al.Application of three-phase interline reaction mechanism on preparation of Ta metal using SOM process[J].The Chinese Journal of Nonferrous Metals200919(3):583-588.
27 FERRARI A C, ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Physical Review B200061(20):14095-14107.
28 ROBERTSON J.Amorphous carbon[J].Advances in Physics198635(4):317-374.
29 ROUQUEROL J, AVNIR D, FAIRBRIDGE C W,et al.Recommendations for the characterization of porous solids (technical report)[J].Pure and Applied Chemistry199466(8):1739-1758.
文章导航

/