介尺度设计功能新材料研究进展
收稿日期: 2023-01-05
网络出版日期: 2023-03-17
基金资助
国家自然科学基金重点项目(51832007);国家自然科学基金国际(地区)合作与交流项目(52220105010);国家自然科学基金中德科学中心2021年度中德合作交流项目(M-0755);国家自然科学基金青年科学基金项目(52203366);山东省自然科学基金重大基础研究项目(ZR2020ZD35);山东省产业技术研究院研发项目(Z1250020005);中国博士后科学基金(2021M703363);广东省基础与应用基础研究基金区域联合基金青年基金(2021A1515110936)
Research progress of mesoscale design of novel functional materials
Received date: 2023-01-05
Online published: 2023-03-17
随着材料多尺度问题的认识与提高,新材料设计的构效关系已经远远超越了结构-性能关联,而是往更加本质的体系自由度及其耦合机制方向深入拓展。新材料设计需要从材料的量子本质明确其性质来源。介尺度结构的动态演变过程表现出了丰富的量子效应,同时材料中的电荷、自旋、轨道、晶格、缺陷、掺杂等自由度及其耦合是材料丰富功能的本质起源。基于介尺度动态结构演变的思想,建立从“分立结构”到“动态结构”到“多尺度多层次结构”的新材料设计思路,基于多自由度耦合范式建立多自由度耦合、解耦的模型,定性、定量、定位地表达各种相互作用对功能材料性质的贡献,是实现功能新材料量子设计的有效途径。重点论述了介尺度设计功能新材料的最新研究进展,特别集中于团簇、量子点、量子材料、稀土基材料等介尺度调控及其特殊性能。
史国强 , 徐珂 , 陈昆峰 , 薛冬峰 . 介尺度设计功能新材料研究进展[J]. 无机盐工业, 2023 , 55(3) : 1 -9 . DOI: 10.19964/j.issn.1006-4990.2023-0011
With the improvement of understanding of the multiscale problem of materials, the structure-activity relationship related to novel materials has gone far beyond the structure-property relationship, but a more essential study of system degrees of freedom and their coupling mechanisms is needed.Therefore, the design of novel materials needs to clarify the source of their properties from the quantum nature of materials.The dynamic evolution of mesoscale structures shows a wealth of quantum effects.Meanwhile, the degree of freedom and its coupling of charge, spin, orbit, lattice, defect, and doping in materials is the origin of material functions.Therefore, based on the idea of mesoscale dynamic structure evolution, the establishment of novel material design idea from“discrete structure” to“dynamic structure” to“multiscale and multilevel structure”, the establishment of multiple degrees of freedom coupling and decoupling model based on the multiple degrees of freedom coupling paradigm, and the qualitative, quantitative and positioning expression of the contributions of various interactions to the properties of functional materials are effective ways to achieve the quantum design of novel functional materials.The latest research progress of novel functional materials for mesoscale design was mainly discussed, especially focusing on the mesoscale control and special properties of clusters, quantum dots, quantum materials, rare-earth-based materials, etc.
| 1 | 邹丽雪,刘艳丽,董瑜,等.量子科技创新战略研究[J].世界科技研究与发展,2022,44(2):145-156. |
| ZOU Lixue, LIU Yanli, DONG Yu,et al.Research on quantum science and technology innovation strategies[J].World Sci-Tech R & D,2022,44(2):145-156. | |
| 2 | 史国强,薛冬峰.量子材料化学研究的多尺度视角[J].化学研究,2022,33(5):2-10. |
| SHI Guoqiang, XUE Dongfeng.Multi-scale perspective of quantum material chemistry research[J].Chemical Research,2022,33(5):2-10. | |
| 3 | SHI Guoqiang, XUE Dongfeng.Perspective on multiple degrees of freedom in crystal materials[J].Science China Technological Sciences,2022,65(11):2787-2789. |
| 4 | SHI Guoqiang, XUE Dongfeng.A multiscale view in functional materials[J].Progress in Natural Science:Materials International,2022.Doi:10.1016/j.pnsc.2022.09.017. |
| 5 | WANG Bo, LIU Wenzhe, ZHAO Maoxiong,et al.Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J].Nature Photonics,2020,14(10):623-628. |
| 6 | ZHANG Cheng, ZHANG Yi, LU Haizhou,et al.Cycling Fermi arc electrons with Weyl orbits[J].Nature Reviews Physics,2021,3(9):660-670. |
| 7 | GEDIK N, VISHIK I.Photoemission of quantum materials[J].Nature Physics,2017,13(11):1029-1033. |
| 8 | KEIMER B, MOORE J E.The physics of quantum materials[J].Nature Physics,2017,13(11):1045-1055. |
| 9 | SAMARTH N.Quantum materials discovery from a synthesis perspective[J].Nature Materials,2017,16(11):1068-1076. |
| 10 | LIU Chaofei, ZHAO Chunxiang, ZHONG Shan,et al.Equally spaced quantum states in van der waals epitaxy-grown nanoislands[J].Nano Letters,2021,21(21):9285-9292. |
| 11 | LIU Jin, SU Rongbin, WEI Yuming,et al.A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J].Nature Nanotechnology,2019,14(6):586-593. |
| 12 | BAO Yanjun, LIN Qiaoling, SU Rongbin,et al.On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J].Science Advances,2020,6(31).Doi:10.1126/sciadv.aba8761. |
| 13 | YU F H, MA D H, ZHUO W Z,et al.Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal[J].Nature Communications,2021,12.Doi:10.1038/s41467-021-23928-w. |
| 14 | DANG Jianchen, SUN Sibai, XIE Xin,et al.Identifying defect-related quantum emitters in monolayer WSe2[J].Npj 2D Materials and Applications,2020,4.Doi:10.1038/s41699-020-0136-0. |
| 15 | XU Xiaodong, YAO Wang, XIAO Di,et al.Spin and pseudospins in layered transition metal dichalcogenides[J].Nature Physics,2014,10(5):343-350. |
| 16 | CAVA R, DE LEON N, XIE Weiwei.Introduction:Quantum materials[J].Chemical Reviews,2021,121(5):2777-2779. |
| 17 | CHAMORRO J R, MCQUEEN T M, TRAN T T.Chemistry of quantum spin liquids[J].Chemical Reviews,2021,121(5):2898-2934. |
| 18 | GUI Xin, LV Bing, XIE Weiwei.Chemistry in superconducto- rs[J].Chemical Reviews,2021,121(5):2966-2991. |
| 19 | HEAD-MARSDEN K, FLICK J, CICCARINO C J,et al.Quantum information and algorithms for correlated quantum matter[J].Chemical Reviews,2021,121(5):3061-3120. |
| 20 | HOSONO H, KITANO M.Advances in materials and applications of inorganic electrides[J].Chemical Reviews,2021,121(5):3121-3185. |
| 21 | KAGAN C R, BASSETT L C, MURRAY C B,et al.Colloidal quantum dots as platforms for quantum information science[J].Chemical Reviews,2021,121(5):3186-3233. |
| 22 | KHOMSKII D I, STRELTSOV S V.Orbital effects in solids:Basics,recent progress,and opportunities[J].Chemical Reviews,2021,121(5):2992-3030. |
| 23 | NGUYEN L T, CAVA R J.Hexagonal perovskites as quantum materials[J].Chemical Reviews,2021,121(5):2935-2965. |
| 24 | TOKURA Y, KANAZAWA N.Magnetic skyrmion materials[J].Chemical Reviews,2021,121(5):2857-2897. |
| 25 | ZUNGER A, MALYI O I.Understanding doping of quantum materials[J].Chemical Reviews,2021,121(5):3031-3060. |
| 26 | BARONE V, ALESSANDRINI S, BICZYSKO M,et al.Computational molecular spectroscopy[J].Nature Reviews Methods Primers,2021,1.Doi:10.1038/s43586-021-00034-1. |
| 27 | WOLFOWICZ G, HEREMANS F J, ANDERSON C P,et al.Quantum guidelines for solid-state spin defects[J].Nature Reviews Materials,2021,6(10):906-925. |
| 28 | LU Yizhong, CHEN Wei.Sub-nanometre sized metal clusters:From synthetic challenges to the unique property discoveries[J].Chemical Society Reviews,2012,41(9):3594-3623. |
| 29 | SLEUTEL M, VAN DRIESSCHE A E S.Role of clusters in nonclassical nucleation and growth of protein crystals[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(5):E546-E553. |
| 30 | FERRANDO R, JELLINEK J, JOHNSTON R L.Nanoalloys:From theory to applications of alloy clusters and nanoparticles[J].Chemical Reviews,2008,108(3):845-910. |
| 31 | GARCíA DE ARQUER F P, TALAPIN D V, KLIMOV V I,et al.Semiconductor quantum dots:Technological progress and future challenges[J].Science,2021,373(6555).Doi:10.1126/science.aaz8541. |
| 32 | KARGOZAR S, HOSEINI S J, MILAN P B,et al.Quantum dots:A review from concept to clinic[J].Biotechnology Journal,2020,15(12).Doi:10.1002/biot.202000117. |
| 33 | CAO Zhiyuan, SHU Yufei, QIN Haiyan,et al.Quantum dots with highly efficient,stable,and multicolor electrochemiluminescen- ce[J].ACS Central Science,2020,6(7):1129-1137. |
| 34 | WU Yi, FANG Yuan, LI Peng,et al.Bandwidth-control orbital-selective delocalization of 4f electrons in epitaxial Ce films[J].Nature Communications,2021,12.Doi:10.1038/s41467-021-22710-2. |
| 35 | ARAI Y, KURODA K, NOMOTO T,et al.Multipole polaron in the devil′s staircase of CeSb[J].Nature Materials,2022,21(4):410-415. |
| 36 | CHEN Huan, JIANG Zihe, HU Huatian,et al.Sub-50-ns ultrafast upconversion luminescence of a rare-earth-doped nanoparticle[J].Nature Photonics,2022,16(9):651-657. |
| 37 | 钱临照.晶体缺陷研究的历史回顾[J].物理,1980,9(4):289-296. |
| QIAN Linzhao.Historical review of crystal defect research[J].Physics,1980,9(4):289-296. | |
| 38 | PONET L, ARTYUKHIN S, KAIN T,et al.Topologically protected magnetoelectric switching in a multiferroic[J].Nature,2022,607(7917):81-85. |
| 39 | GRITSCH A, WEISS L, FRüH J,et al.Narrow optical transitions in erbium-implanted silicon waveguides[J].Physical Review X,2022,12(4).Doi:10.1103/PhysRevX.12.041009. |
| 40 | ORTU A, TIRANOV A, WELINSKI S,et al.Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins[J].Nature Materials,2018,17(8):671-675. |
| 41 | BARTHOLOMEW J G, ROCHMAN J, XIE Tian,et al.On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4[J].Nature Communications,2020,11.Doi:10.1038/s41467-020-16996-x. |
| 42 | ARH T,SANA B, PREGELJ M,et al.The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate[J].Nature Materials,2022,21(4):416-422. |
| 43 | 蔡子.时间晶体:一种新物态的探索[J].物理,2022,51(5):351-353. |
| CAI Zi.Time crystals:The search for a new phase of matter[J].Physics,2022,51(5):351-353. | |
| 44 | ZHANG J, HESS P W, KYPRIANIDIS A,et al.Observation of a discrete time crystal[J].Nature,2017,543(7644):217-220. |
| 45 | LIU Tianji, GUO Cheng, LI Wei,et al.Thermal photonics with broken symmetries[J].eLight,2022,2(1):1-20. |
/
| 〈 |
|
〉 |