无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

麦羟基硅钠石的可控合成及其阳离子交换性能研究

  • 郭展展 ,
  • 周文元 ,
  • 杨韵斐 ,
  • 吴俊书 ,
  • 王金淑 ,
  • 孙领民 ,
  • 张志刚 ,
  • 杜玉成
展开
  • 1.北京工业大学,北京 100124
    2.中国恩菲工程技术有限公司,北京 100038
郭展展(1994— ),女,硕士,主要研究方向为多金属硅酸盐功能材料的合成以及环境中重金属离子的吸附技术;E-mail:2550799438@qq.com

收稿日期: 2022-09-06

  网络出版日期: 2023-02-16

基金资助

国家自然科学基金(52172290);河南省水体污染防治与修复重点实验室开放基金(CJSP2021009)

Study on controlled synthesis of magadiite and its metal ion exchange properties

  • Zhanzhan GUO ,
  • Wenyuan ZHOU ,
  • Yunfei YANG ,
  • Junshu WU ,
  • Jinshu WANG ,
  • Lingmin SUN ,
  • Zhigang ZHANG ,
  • Yucheng DU
Expand
  • 1. Beijing University of Technology,Beijing 100124,China
    2. China ENFI Engineering Co. ,Ltd. ,Beijing 100038,China

Received date: 2022-09-06

  Online published: 2023-02-16

摘要

目前,开发绿色高效的重金属吸附材料受到人们的广泛关注。以硅藻土为原料,经水热法选择性地制备了2类硅酸盐材料即麦羟基硅钠石和方沸石。吸附测试结果表明,麦羟基硅钠石层间的钠离子能够与锂离子、镁离子、锌离子、钴离子、镍离子、铜离子等进行阳离子交换且能保持层状母体框架的稳定性。以钴离子、镍离子为例深入研究其吸附动力学和吸附机制发现,钴离子和镍离子的嵌入分别将麦羟基硅钠石的层间距由本征的1.56 nm减小到0.24、0.23 nm;室温下,对钴离子、镍离子的最大吸附量分别可达45、39 mg/g,均符合Langmuir单层吸附模型;钠离子的置换量大约是吸附的钴离子、镍离子量的两倍,证实层间离子交换主导吸附化学过程。因此,麦羟基硅钠石材料在多金属硅酸盐功能材料的合成以及环境吸附净化领域具有较大的应用潜力。

本文引用格式

郭展展 , 周文元 , 杨韵斐 , 吴俊书 , 王金淑 , 孙领民 , 张志刚 , 杜玉成 . 麦羟基硅钠石的可控合成及其阳离子交换性能研究[J]. 无机盐工业, 2023 , 55(2) : 45 -54 . DOI: 10.19964/j.issn.1006-4990.2022-0537

Abstract

At present,the development of green and efficient heavy metal adsorption materials has attracted extensive attention.Using diatomite as raw material,two kinds of silicate materials,namely,magadiite and analcime,were selectively prepared by hydrothermal method.The Na+ between the layers of wheat hydroxysodalite could exchange cations with Li+,Mg2+,Zn2+,Co2+,Ni2+,Cu2+,etc.,and maintain the stability of the layered parent framework.The adsorption kinetics and mechanisms were detailedly studied by using Co2+ and Ni2+ adsorption.It is indicated that the distance of magadiite lamellar structure was reduced from 1.56 nm to 0.24 nm(Co2+)and 0.23 nm(Ni2+).The maximum adsorption capacity towards Co2+ and Ni2+ reached 45 mg/g and 39 mg/g at room temperature,respectively.The adsorption processes were fitted with the Langmuir model.The released Na+ was approximate double of the adsorbed divalent Co2+ and Ni2+,showing that cation exchange dominated the adsorption processes.Thus,the prepared magadiite materials demonstrated great potentials for constructing multi-metal silicates and environmental purification applications.

参考文献

1 LI Jiahao, XIA Chenggong, CHENG Rong,et al.Passivation of multiple heavy metals in lead-zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles:Mechanisms and microbial community evolution[J].Science of the Total Environment,2022,803.Doi:10.1016/j.scitotenv.2021.149866 .
2 HUANG Benqing, TANG Yongjian, GAO Anren,et al.Dually charged polyamide nanofiltration membranes fabricated by micro-wave-assisted grafting for heavy metals removal[J].Journal of Mem-Science brane,2021,640.Doi:10.1016/j.memsci.2021.119834 .
3 CHEN Mingyue, NONG Shuying, ZHAO Yantao,et al.Renewable P-type zeolite for superior absorption of heavy metals:Isotherms,kinetics,and mechanism[J].Science of the Total Environment,2020,726.Doi:10.1016/j.scitotenv.2020.138535 .
4 TAN Daoyong, YUAN Peng, ANNABI-BERGAYA F,et al.Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole[J].Scientific Reports,2015,5.Doi:10.1038/srep08870 .
5 蒋芳,雷婷,李声剑,等.聚合物吸附剂的制备及在水体重金属污染净化应用中的研究进展[J].材料导报,2019,33(S2):526-532.
5 JIANG Fang, LEI Ting, LI Shengjian,et al.Research progress in preparation of polymer adsorbents and purification of heavy metal pollution in water body[J].Materials Reports,2019,33(S2):526-532.
6 ARAGAW T A, ALENE A N.A comparative study of acidic,basic,and reactive dyes adsorption from aqueous solution onto Kaolin adsorbent:Effect of operating parameters,isotherms,kinetics,and thermodynamics[J].Emerging Contaminants,2022,8:59-74.
7 KRISHNA R, VAN BATEN J M.Highlighting the anti-synergy between adsorption and diffusion in cation-exchanged faujasite zeolites[J].ACS Omega,2022,7(15):13050-13056.
8 FRAN?A D B, OLIVEIRA L S, NUNES FILHO F G,et al.The versatility of montmorillonite in water remediation using adsorption:Current studies and challenges in drug removal[J].Journal of Environmental Chemical Engineering,2022,10(2).Doi:10.1016/j.jece.2022.107341 .
9 KWON O Y, JEONG S Y, JEONG K S,et al.Hydrothermal syntheses of Na-magadiite and Na-kenyaite in the presence of carbon-ate[J].Bulletin of the Korean Chemical Society,1995,16(8):737-741.
10 彭淑鸽,高秋明.新型纳米层状硅酸盐Magadiite主体材料的制备、表征、结构和生成机理研究[J].高等学校化学学报,2004,25(4):603-606,3.
10 PENG Shuge, GAO Qiuming.Preparation,characterization,structure and formation mechanism of a novel layered structural nanosilicate magadiite host[J].Chemical Research in Chinese Universities,2004,25(4):603-606,3.
11 ALMOND G G, HARRIS R K, FRANKLIN K R.A structural consideration of kanemite,octosilicate,magadiite and kenyaite[J].Journal of Materials Chemistry,1997,7(4):681-687.
12 KOOLI F, MIANHUI L, ALSHAHATEET S F,et al.Characterization and thermal stability properties of intercalated Na-magadiite with cetyltrimethylammonium(C16TMA)surfactants[J].Journal of Physics and Chemistry of Solids,2006,67(5/6):926-931.
13 WANG Zhen, PINNAVAIA T J.Intercalation of poly(propyleneoxide)amines(Jeffamines)in synthetic layered silicas derived from ilerite,magadiite,and kenyaite[J].Journal of Materials Chemistry,2003,13(9):2127-2131.
14 BOROWSKI M, KOVALEV O, GIES H.Structural characterization of the hydrous layer silicate Na-RUB-18,Na8Si32O64(OH)8·32H2O and derivatives with XPD-,NPD-,and SS NMR experiments[J].Microporous and Mesoporous Materials,2008,107(1/2):71-80.
15 DOS SANTOS T G, DE ASSIS G C, SILVA A O S DA,et al.Progress in development of magadiite to produce multifunctional lamellar materials[J].ACS Applied Materials & Interfaces,2022.Doi:10.1021/acsami.1c15785 .
16 FATIMA H, SEO J D, KIM J,et al.Adsorption behavior of kenyaite for Cu2+ and Pb2+ [J].Journal of Porous Materials,2022,29(1):111-117.
17 MORITA M, HORIUCHI Y, MATSUOKA M,et al.Preparation of titanium-containing layered alkali silicates[J].Crystal Growth & Design,2022,22(3):1638-1644.
18 JIANG Dandan, LV Siqi, HAN Xue,et al.Design of Gd3+-immoy selective enrichment of phosphopeptides[J].Mikrochimica Acta,2021,188(10).Doi:10.1007/s00604-021-04972-1 .
19 YUAN Zhiqing, TAO Weichuan, WANG Zhendong,et al.One-step synthesis of highly dispersed nanosheets of magadiite[J].Applied Clay Science,2019,181.Doi:10.1016/j.clay.2019. 105231 .
20 ATTAR K, DEMEY H, BOUAZZA D,et al.Sorption and desorption studies of Pb(Ⅱ)and Ni(Ⅱ)from aqueous solutions by a new composite based on alginate and magadiite materials[J].Polymers,2019,11(2).Doi:10.3390/polym11020340 .
21 JúNIOR A J S F, SODRé W C, SOARES B E C F,et al.In situ assembling of layered double hydroxide to magadiite layered silicate with enhanced photocatalytic and recycling performance[J].Applied Surface Science,2021,569.Doi:10.1016/j.apsusc.2021. 151007 .
22 SHI Zhifang, WANG Yu, MENG Changgong,et al.Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine[J].Microporous and Mesoporous Materials,2013,176:155-161.
23 KATABATHINI N, MAKSOD I H ABD EL, MOKHTAR M.Cu,Fe and Mn oxides intercalated SiO2 pillared magadiite and ilerite catalysts for NO decomposition[J].Applied Catalysis A:General,2021,616.Doi:10.1016/j.apcata.2021.118100 .
24 LIU Haiyan, SHEN Tong, LI Tiesen,et al.Green synthesis of zeolites from a natural aluminosilicate mineral rectorite:Effects of thermal treatment temperature[J].Applied Clay Science,2014,90:53-60.
25 杨晨,吴俊书,王金淑,等.硅藻土的可控沸石化及其对铅离子的吸附固定[J].无机盐工业,2022,54(4):128-134.
25 YANG Chen, WU Junshu, WANG Jinshu,et al.Controlled zeolitization of diatomite for the adsorption and its immobilization of Pb(Ⅱ)ions[J].Inorganic Chemicals Industry,2022,54(4):128-134.
26 孙领民,吴俊书,王金淑,等.低品位硅藻土液相转化合成方钠石重金属吸附剂[J].化学研究,2020,31(4):302-311.
26 SUN Lingmin, WU Junshu, WANG Jinshu,et al.Synthesis of sodalite zeolite from low-grade diatomite for heavy metal adsorpti-on[J].Chemical Research,2020,31(4):302-311.
27 LI Keyan, LI Min, XUE Dongfeng.Solution-phase electronegativity scale:Insight into the chemical behaviors of metal ions in solution[J].The Journal of Physical Chemistry.A,2012,116(16):4192-4198.
28 HACHEMAOUI M, MOKHTAR A, ISMAIL I,et al.M(M:Cu,Co,Cr or Fe)nanoparticles-loaded metal-organic framework MIL-101(Cr)material by sonication process:Catalytic activity and antibacterial properties[J].Microporous and Mesoporous Materials,2021,323.Doi:10.1016/j.micromeso.2021.111244 .
29 LU Jitao, ZENG Yue, MA Xiaoxue,et al.Cobalt nanoparticles embedded into N-doped carbon from metal organic frameworks as highly active electrocatalyst for oxygen evolution reaction[J].Polymers,2019,11(5).Doi:10.3390/polym11050828 .
30 JING X, ZHANG Y, DONG X,et al.Layered silicate magadiite-derived three-dimensional honeycomb-like cobalt-nickel silicates as excellent cathode for hybrid supercapacitors[J].Materials Today Chemistry,2021,22.Doi:10.1016/j.mtchem.2021. 100550 .
31 YANG Tao, LIU yang, LIU Caixia,et al.Nickel silicate core-shell microspheres hybridized with graphene boosting electrochemical performance[J].Chemical Physics Letters,2020,758.Doi:10.1016/j.cplett.2020.137936 .
文章导航

/