锆基双金属氧化物催化剂硫中毒的研究
收稿日期: 2022-11-10
网络出版日期: 2023-01-17
基金资助
贵州省教育厅创新群体项目(黔教合KY字[2021]010);贵州省百层次创新型人才专项(黔科合平台人才[2016]5655);贵州省科技创新人才团队(黔科合平台人才[2018]5607);贵州省优秀青年科技人才项目(黔科合平台人才[2019]5645);遵义市创新人才团队培养项目(遵义科人才[2020]9)
Study on sulfur poisoning of zirconium-based bimetallic oxides catalyst
Received date: 2022-11-10
Online published: 2023-01-17
在工业二氧化碳加氢制甲醇过程中,硫化氢气体的引入将对该过程中使用的催化剂活性及稳定性带来负面的影响。基于此,采用微反应合成法成功制备了InZrO x 和ZnZrO x 锆基催化剂,并研究了在二氧化碳加氢反应中,硫化氢气体对锆基催化剂的结构性质及其催化性能的影响规律。结果表明,在T=573 K、p=3.0 MPa和GHSV=18 000 mL/(gcat·h)条件下,仅通入二氧化碳/氢气反应气时,InZrO x 和ZnZrO x 催化剂的二氧化碳转化率和甲醇选择性分别为7.2%、9.3%和93%、92%。在二氧化碳/氢气原料气中通入体积分数为5×10-3硫化氢气体时,InZrO x 和ZnZrO x 催化剂的二氧化碳转化率和甲醇选择性都降为0,这主要是因为硫化氢气体占据了氧空位,导致锆基双金属氧化物催化剂硫中毒失活。当停止通硫化氢气体时,InZrO x 和ZnZrO x 催化剂的二氧化碳转化率和甲醇选择性分别恢复为5%、8.6%和58%、84%,分析表明停止通硫化氢气体后,氧空位浓度又恢复,锆基双金属氧化物催化剂部分活性恢复。此研究明晰了锆基催化剂硫中毒失活原理,以及为后期开发耐硫性催化剂提供了理论依据。
关键词: 微反应合成; CO2加氢制甲醇; 锆基双金属氧化物催化剂; 硫中毒; 氧空位
杨庭龙 , 王富中 , 刘飞 . 锆基双金属氧化物催化剂硫中毒的研究[J]. 无机盐工业, 2023 , 55(1) : 151 -158 . DOI: 10.19964/j.issn.1006-4990.2022-0162
In industrial CO2 hydrogenation to methanol,the introduction of H2S gas will have negative impact on the activity and stability of catalyst used in the process.Based on this,InZrO x and ZnZrO x zirconium-based catalysts by microreaction synthesis method were successfully prepared Meanwhile,the influence law of H2S gas on the structural properties and catalytic performance of zirconium-based catalysts in the CO2 hydrogenation reaction was investigated.The results showed that under the conditions of T=573 K,P=3.0 MPa and GHSV=18 000 mL/(gcat·h),when only CO2/H2 reaction gas was passed,the CO2 conversion and CH3OH selectivity of InZrO x and ZnZrO x catalysts were 7.2%,9.3% and 93%,92%,respectively.The CO2 conversion and CH3OH selectivity of both InZrO x and ZnZrO x catalysts were decreased to 0 when H2S gas at a concentration of 5×10-3 was introduced into the CO2/H2 feed gas.It was mainly due to the occupation of oxygen vacancies by H2S gas,which led to the sulfur poisoning deactivation of the zirconium-based bimetallic oxide catalysts.When H2S gas was stopped,the CO2 conversion and CH3OH selectivity of InZrO x and ZnZrO x catalysts were recovered to 5%,8.6% and 58%,84% respectively.The analysis showed that when the H2S gas was stopped,the oxygen vacancy concentration was restored and the activity of zirconium-based bimetallic oxide catalysts was partially restored.This study clarified the principle of sulfur poisoning deactivation of zirconium-based catalysts and provided theoretical basis for the later development of sulfur-resistant catalysts.
| 1 | GRACIANI J, MUDIYANSELAGE K, XU Fang, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO?[J].Science, 2014, 345(6196):546-550. |
| 2 | YANG Haiyan, ZHANG Chen, GAO Peng, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J].Catalysis Science & Technology, 2017, 7(20):4580-4598. |
| 3 | ZOU Qizhuang, LONG Guangcai, ZHAO Tianxiang, et al. Catalyst-free selective N-formylation and N-methylation of amines using CO2 as a sustainable C1 source[J].Green Chemistry, 2020, 22(4):1134-1138. |
| 4 | GARCíA-TRENCO A, REGOUTZ A, WHITE E R, et al. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to metha-nol[J].Applied Catalysis B:Environmental, 2018, 220:9-18. |
| 5 | LI Zhenhua, LIU Jinjia, ZHAO Yufei, et al. Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins[J].Advanced Materials:Deerfield Beach, Fla.,2018, 30(31).Doi:10.1002/adma.201800527. |
| 6 | WANG L, WANG L, ZHANG J, et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J].Angewandte Chemie:International Ed.in English, 2018, 57(21):6104-6108. |
| 7 | SHIH C F, ZHANG Tao, LI Jinghai, et al. Powering the future with liquid sunshine[J].Joule, 2018, 2(10):1925-1949. |
| 8 | BAVYKINA A, YARULINA I, ABDULGHANI A J AL, et al. Turning a methanation co catalyst into an in-co methanol producer[J].ACS Catalysis, 2019, 9(8):6910-6918. |
| 9 | DOSTAGIR N H M, THOMPSON C, KOBAYASHI H, et al. Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol[J].Catalysis Science & Technology, 2020, 10(24):8196-8202. |
| 10 | AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J].Journal of the American Chemical Society, 2017, 139(10):3834-3840. |
| 11 | KATTEL S, RAMíREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J].Science, 2017, 355(6331):1296-1299. |
| 12 | FIORDALISO E M, SHARAFUTDINOV I, CARVALHO H W P, et al. Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol:Catalytic performance and in situ characterization[J].ACS Catalysis, 2015, 5(10):5827-5836. |
| 13 | KATTEL S, YU Weiting, YANG Xiaofang, et al. CO2 hydrogenation over oxide-supported PtCo catalysts:The role of the oxide support in determining the product selectivity[J].Angewandte Chemie:International Ed.in English, 2016, 55(28):7968-7973. |
| 14 | WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J].Science Advances, 2017, 3(10).Doi:10.1126/sciadv.1701290. |
| 15 | WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance MaZrO x (Ma=Cd,Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J].ACS Catalysis, 2019, 9(11):10253-10259. |
| 16 | LIU Xiaoliang, WANG Mengheng, ZHOU Cheng, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications:Cambridge, England,2018, 54(2):140-143. |
| 17 | STANGELAND K, KALAI D Y, DING Yi, et al. Mesoporous manganese-cobalt oxide spinel catalysts for CO2 hydrogenation to methanol[J].Journal of CO2 Utilization, 2019, 32:146-154. |
| 18 | LIU Xiaoliang, WANG Mengheng, YIN Haoren, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J].ACS Catalysis, 2020, 10(15):8303-8314. |
| 19 | 肖亦寒, 曹建新, 刘飞, 等. 焙烧温度对MnZnO x 物化性质及催化性能的影响[J].无机盐工业, 2021, 53(4):95-100. |
| 19 | XIAO Yihan, CAO Jianxin, LIU Fei, et al. Effect of calcination temperature on physicochemical properties and catalytic performance of MnZnO x [J].Inorganic Chemicals Industry, 2021, 53(4):95-100. |
| 20 | MARTIN O, MARTíN A J, MONDELLI C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenati-on[J].Angewandte Chemie:International Ed.in English, 2016, 55(21):6261-6265. |
| 21 | DANG Shanshan, GAO Peng, LIU Ziyu, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J].Journal of Catalysis, 2018, 364:382-393. |
| 22 | WANG Xiuxiu, WANG Yizhou, YANG Chunliang, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2 [J].Applied Catalysis A:General, 2020, 595.Doi:10.1016/j.apcata.2020.117507. |
| 23 | PAN Y X, LIU C J, MEI D, et al. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100)[J].Langmuir, 2010, 26(8):5551-5558. |
| 24 | GRABOWSKI R, S?OCZY?SKI J, ?LIWA M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J].ACS Catalysis, 2011, 1(4):266-278. |
| 25 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J].The Journal of Physical Chemistry C, 2012, 116(14):7817-7825. |
| 26 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110):A DFT study[J].ACS Catalysis, 2013, 3(6):1296-1306. |
| 27 | SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J].Journal of CO2 Utilization, 2015, 12:1-6. |
| 28 | KUMARI N, HAIDER M A, AGARWAL M, et al. Role of reduced CeO2(110) surface for CO2 reduction to CO and metha- |
| 28 | nol[J].The Journal of Physical Chemistry C, 2016, 120(30):16626-16635. |
| 29 | RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J].Nano Letters, 2016, 16(12):7645-7649. |
| 30 | LARMIER K, LIAO W C, TADA S, et al. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles:Reaction intermediates and the role of the metal-support interface[J].Angewandte Chemie:International Ed.in English, 2017, 56(9):2318-2323. |
| 31 | LIU Piao, CAO Jianxin, XU Zheng, et al. Thiolation of methanol with H2S using core-shell structured ZSM-5@t-ZrO2 catalyst[J].Chemical Engineering Science, 2020, 211.Doi:10.1016/j.ces.2019.115273. |
| 32 | WANG Ying, YANG Tinglong, LIU Fei, et al. High selectivity in methanethiol synthesis over a coated composite comprising ZSM-5 with t-ZrO2 [J].Microporous and Mesoporous Materials, 2020, 305.Doi:10.1016/j.micromeso.2020.110358. |
/
| 〈 |
|
〉 |