无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ
研究与开发

球磨时间对石墨烯复合材料电化学性能的影响

  • 马才伏 ,
  • 袁川来 ,
  • 赵雪琪
展开
  • 1.湖南交通职业技术学院,湖南 长沙 410015
    2.湖南工业大学
    3.广东工业大学
马才伏(1972— ),男,硕士,副教授,研究方向为汽车材料等;E-mail:745388006@qq.com

收稿日期: 2022-04-22

  网络出版日期: 2022-12-19

基金资助

教育部项目,新能源汽车技术专业信息技术与教育教学融合创新研究(YB2021090105)

Effect of ball milling time on electrochemical properties of graphene composites

  • Caifu MA ,
  • Chuanlai YUAN ,
  • Xueqi ZHAO
Expand
  • 1. Hunan Communication Polytechnic, Changsha 410015, China
    2. Hunan University of Technology
    3. Guangdong University of Technology

Received date: 2022-04-22

  Online published: 2022-12-19

摘要

采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学工作站等手段研究了球磨时间(0~60 min)对石墨烯/La15Fe2Ni71Mn6B2Al2复合材料微观结构和电化学性能的影响。结果表明,球磨时间为0~60 min制备的石墨烯复合储氢合金都主要由La3Ni13B2、(Fe,Ni)、LaNi5相组成,其中LaNi5相的晶胞体积会随着球磨时间的增加而减小。随着球磨时间从0 min增加至60 min,石墨烯复合储氢合金的电荷转移电阻先减小后增大、交换电流密度先增大后减小、氢扩散系数和荷电保持率先增加后减小,在球磨时间为40 min时取得电荷转移电阻最小值,交换电流密度、氢扩散系数和荷电保持率最大值。此外,在相同循环次数下球磨时间为40 min制备的石墨烯复合储氢合金具有相对较高的放电比容量。适宜的石墨烯/La15Fe2Ni71Mn6B2Al2复合材料的球磨时间为40 min,此时氢扩散系数和荷电保持率分别为1.259×10-8 cm2/s和97.62%,具有较好的电化学性能,这主要与此时复合材料粉末颗粒较为细小、均匀且结晶度较高等有关。

本文引用格式

马才伏 , 袁川来 , 赵雪琪 . 球磨时间对石墨烯复合材料电化学性能的影响[J]. 无机盐工业, 2022 , 54(12) : 68 -73 . DOI: 10.19964/j.issn.1006-4990.2022-0135

Abstract

The effects of ball milling time on the microstructure and electrochemical properties of graphene/La15Fe2Ni71Mn6B2Al2 composites were studied by means of X-ray diffraction(XRD),scanning electron microscope(SEM) and electrochemical workstation.The results showed that the graphene composite hydrogen storage alloys milled for 0~60 min were mainly composed of La3Ni13B2,(Fe,Ni) and LaNi5 phases,and the cell volume of LaNi5 phase would decrease with the increase of milling time.With the increase of ball milling time from 0 to 60 min,the charge transfer resistance of graphene composite hydrogen storage alloy was firstly decreased and then increased,the exchange current density was firstly increased and then decreased,the hydrogen diffusion coefficient and charge retention were firstly increased and then decreased.When the ball milling time was 40 min,the minimum value of charge transfer resistance and the maximum value of exchange current density,hydrogen diffusion coefficient and charge retention were obtained.In addition,graphene composite hydrogen storage alloys showed relatively high discharge capacity at the same cycle times and ball milling time of 40 min.The suitable milling time of graphene/La15Fe2Ni71Mn6B2Al2 composite was 40 min,and the hydrogen diffusion coefficient and charge retention were 1.259×10-8 cm2/s and 97.62% respectively,which showed good electrochemical properties.It was mainly related to the fine and uniform powder particles and high crystallinity of the composite.

参考文献

1 田桂丽. 固态锂电池发展现状与技术进展[J]. 化学工业, 2018, 36(6):30-35, 43.
1 TIAN Guili. State-of-the-art of solid lithium batteries[J]. Chemical Industry, 2018, 36(6):30-35, 43.
2 刘昕瑀, 田晓, 纪铭悦, 等. La-Mg-Ni储氢合金结构及其合金成分优化研究进展[J]. 稀土, 2021, 42(3):131-144.
2 LIU Xinyu, TIAN Xiao, JI Mingyue, et al. A review on the structure and alloy composition optimization of La-Mg-Ni hydrogen storage alloys[J]. Chinese Rare Earths, 2021, 42(3):131-144.
3 徐津, 闫慧忠, 王利, 等. La-Y-Ni系储氢合金材料的研究进展[J]. 稀土, 2020, 41(5):114-122.
3 XU Jin, YAN Huizhong, WANG Li, et al. Research progress of La-Y-Ni type hydrogen storage materials[J]. Chinese Rare Earths, 2020, 41(5):114-122.
4 刘冬梅, 肖润谋, 佘翔. 新能源汽车用储氢合金的制备与电化学性能研究[J]. 化工新型材料, 2021, 49(6):131-136.
4 LIU Dongmei, XIAO Runmou, SHE Xiang. Preparation and electrochemical property of hydrogen storage alloy for new energy vehicle[J]. New Chemical Materials, 2021, 49(6):131-136.
5 许磊, 柯庆进, 李莎, 等. La-Fe-B合金的微观组织及物相转变研究[J]. 稀有金属与硬质合金, 2020, 48(1):31-34, 46.
5 XU Lei, KE Qingjin, LI Sha, et al. Study on microstructure and phase transformation of La-Fe-B alloys[J]. Rare Metals and Cemented Carbides, 2020, 48(1):31-34, 46.
6 KOHNO T, YOSHIDA H, KAWASHIMA F, et al. Hydrogen storage properties of new ternary system alloys:La2MgNi9,La5Mg2Ni23,La3MgNi14 [J]. Journal of Alloys and Compounds, 2000, 311(2):L5-L7.
7 程丽群, 左付山. 新能源汽车电池用无镁储氢合金的制备与性能研究[J]. 无机盐工业, 2021, 53(11):71-76.
7 CHENG Liqun, ZUO Fushan. Study on preparation and properties of magnesium free hydrogen storage alloys for new energy vehicle batteries[J]. Inorganic Chemicals Industry, 2021, 53(11):71-76.
8 YANG Pengcheng, TIAN Chuang, YAO Qingrong. Effects of co element on the structure,magnetic,and microwave absorption properties of La-Fe-B alloys[J]. Journal of Superconductivity and Novel Magnetism, 2020, 33(4):1125-1128.
9 张龙, 赵熙然, 傅宇晨. 混合动力车电池用RE-Mg-Ni基储氢合金的电化学性能[J]. 电源技术, 2021, 45(8):1027-1030, 1086.
9 ZHANG Long, ZHAO Xiran, FU Yuchen. Electrochemical performance of RE-Mg-Ni based hydrogen storage alloys for hybrid electric vehicle batteries[J]. Chinese Journal of Power Sources, 2021, 45(8):1027-1030, 1086.
10 胡小龙, 陈炜, 孙志娟, 等. 石墨烯复合及Y替代La对AB5型储氢合金电化学性能的影响[J]. 稀土, 2018, 39(6):92-98.
10 HU Xiaolong, CHEN Wei, SUN Zhijuan, et al. Effects of graphene composite and Y substitution for La on electrochemical pro-perties of AB[J]. Chinese Rare Earths, 2018, 39(6):92-98.
11 梁丽萍, 曾志伟. 电动汽车电池用储氢合金的制备与性能[J]. 电池, 2021, 51(3):233-237.
11 LIANG Liping, ZENG Zhiwei. Preparation and performance of hydrogen storage alloys of battery for electric vehicle[J]. Battery Bimonthly, 2021, 51(3):233-237.
12 范庆科, 孟庆华. 汽车用La0.79Mg0.21Ni3.95储氢合金的制备与电化学性能研究[J]. 无机盐工业, 2022,54(3):71-76.
12 FAN Qingke, MENG Qinghua. Study on preparation and electrochemical properties of La0.79Mg0.21Ni3.95 hydrogen storage alloy for vehicles[J]. Inorganic Chemicals Industry, 2022, 54(3):71-76.
13 董丽坤, 贾永卿. 石墨烯负载纳米二硫化钴的制备及其在锂离子电池方面的应用研究[J]. 无机盐工业, 2020, 52(7):55-58.
13 DONG Likun, JIA Yongqing. Preparation of graphene loaded nano-sized CoS2 and its application in lithium-ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(7):55-58.
14 佘翔, 刘冬梅, 李雪. 电动汽车用La-Fe-B储氢合金的制备与电化学性能研究[J]. 无机盐工业, 2021, 53(10):64-69.
14 SHE Xiang, LIU Dongmei, LI Xue. Study on preparation and electrochemical properties of La-Fe-B hydrogen storage alloys for high capacity electric vehicles[J]. Inorganic Chemicals Industry, 2021, 53(10):64-69.
15 焦齐统, 潘炜, 朱帅, 等. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6):6140-6145.
15 JIAO Qitong, PAN Wei, ZHU Shuai, et al. Effects of phase composition on electrochemical properties of La0.75Mg0.25Ni3.5 hydrogen storage alloy[J]. Materials Reports, 2021, 35(6):6140- 6145.
16 KOHNO T, TAKENO S, YOSHIDA H, et al. Structural analysis of La-Mg-Ni-based new hydrogen storage alloy[J]. Research on Chemical Intermediates, 2006, 32(5):437-445.
17 王新颖, 黄红霞, 谢文强, 等. 石墨烯对La-Mg-Ni基储氢合金电化学性能的影响[J]. 精细化工, 2016, 33(8):850-855.
17 WANG Xinying, HUANG Hongxia, XIE Wenqiang, et al. Effect of graphene on electrochemical properties of the La-Mg-Ni-based hydrogen storage alloy[J]. Fine Chemicals, 2016, 33(8):850-855.
18 HUANG Linjun, WANG Yanxin, HUANG Zhen, et al. Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy[J]. Journal of Power Sources, 2014, 269: 716-722.
19 王宏莉, 闫慧忠, 王利. 淬火处理对La15Fe22Ni55Mn5B3储氢合金结构和电化学性能的影响[J]. 金属功能材料, 2017, 24(5):27-31.
19 WANG Hongli, YAN Huizhong, WANG Li. Influence of quenchingtreatment on structure and electrochemical properties of La15Fe22Ni55Mn5B3 hydrogen storage alloy[J]. Metallic Functional Materials, 2017, 24(5):27-31.
20 杨敬江, 罗峰, 童芳. 新能源汽车用储氢合金的制备与电化学性能研究[J]. 铸造技术, 2018, 39(12):2673-2677.
20 YANG Jingjiang, LUO Feng, TONG Fang. Preparation and electrochemical properties of hydrogen storage alloys for new energy vehicles[J]. Foundry Technology, 2018, 39(12):2673-2677.
21 胡学超, 闫慧忠, 熊玮, 等. 退火热处理对快淬态La15-xSmxFe2Ni76Mn5B2储氢合金组织结构及电化学性能的影响[J]. 稀土, 2015, 36(4):20-26.
21 HU Xuechao, YAN Huizhong, XIONG Wei, et al. Effect of annealing treatment on structure and electrochemical properties of the quenched La15- x Sm x Fe2Ni76Mn5B2x=0,2,4,6) hydrogen storage alloys[J]. Chinese Rare Earths, 2015, 36(4):20-26.
22 卫振, 冯佃臣, 翟亭亭, 等. La2- x Sm x Mg16Ni(x=0.1~0.4)+100%Ni+5%石墨烯复合储氢合金电化学性能[J]. 金属功能材料, 2022, 29(1):33-39.
22 WEI Zhen, FENG Dianchen, ZHAI Tingting, et al. Electrochemical performance of La2- x Sm x Mg16Ni(x=0.1~0.4)+100% Ni+5% graphene composite hydrogen storage alloys[J]. Metallic Functional Materials, 2022, 29(1):33-39.
23 ZENG Liang, LAN Zhiqiang, SUN Zhenzhen, et al. Enhanced electrochemical and hydrogen storage properties of La-Mg-Ni-based alloy electrode using a Ni and N co-doped reduced graphene oxide nanocomposite as a catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(47):25840-25849.
文章导航

/